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Abstract

Extensible Untrusted Code Verification

by

Robert Richard Schneck
Doctor of Philosophy in Logic and the Methodology of Science

University of California, Berkeley

Professor George Necula, Chair

Various mechanisms exist for enforcing that untrusted code satisfies basic
but essential security properties, such as memory safety. A security mechanism
needs to be trustworthy, so that users can feel secure that the mechanism can
not in some way be tricked by malicious or erroneous code. It is increasingly
important that security mechanisms be flexible enough to handle software sys-
tems written in more than one language. Finally a security mechanism must be
a practical and usable tool; it must scale to handle realistic software systems.
Standard security enforcement techniques using intermediate languages run on
virtual machines are disappointing; in particular, the intermediate languages
are too fixed to handle a wide variety of source languages in a natural way,
even when the intermediate language is designed with flexibility in mind.

In this dissertation I propose a security enforcement mechanism called the
Open Verifier. The Open Verifier allows a producer of untrusted code to include
with the code an untrusted verifier called an extension. The trusted framework
of the Open Verifier works together with the untrusted extension to produce a
complete trustworthy verification. The code producer can tailor the extension
to the particular source language and compilation strategy used to produce the
untrusted code, ensuring the flexibility of the system. At the same time the
trusted framework is kept reasonably simple and small, and easy to trust.

In order to produce a trustworthy verification from an untrusted verifier,
the extension is required to emit intermediate results which can be checked by
the trusted components of the system. In fact, the extension must produce
the proofs of obligations produced by the trusted framework. The heart of this
dissertation is the architecture and logic of that interaction. Additionally, to
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show that the Open Verifier is a practical and usable tool, I describe by example
the process of producing an extension for a realistic language, highlighting in
particular the proof development strategies.



i

Contents

1 Introduction 1
1.1 Overview of the Open Verifier . . . . . . . . . . . . . . . . . . . 8

1.1.1 The Basic Idea . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.2 Structure of the Verification . . . . . . . . . . . . . . . . 9

1.1.2.1 Local Invariants . . . . . . . . . . . . . . . . . 11
1.1.2.2 Parsing . . . . . . . . . . . . . . . . . . . . . . 12
1.1.2.3 Local Safety Conditions, Next States, and Ini-

tial State . . . . . . . . . . . . . . . . . . . . . 13
1.1.2.4 Bringing It All Together . . . . . . . . . . . . . 14

1.1.3 Building the Extension . . . . . . . . . . . . . . . . . . . 15

2 The Logical Basis of the Open Verifier 17
2.1 Logical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 The Simplified Formal Development . . . . . . . . . . . . . . . . 18
2.3 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 The Motivation for Indexing . . . . . . . . . . . . . . . . 22
2.3.2 Indexed Local Invariants . . . . . . . . . . . . . . . . . . 24

2.4 Augmented Decoder Input . . . . . . . . . . . . . . . . . . . . . 26
2.5 Global Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6 The Soundness Theorem . . . . . . . . . . . . . . . . . . . . . . 30
2.7 The Type Locinv . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7.1 Existential Variables, Registers, and Assumptions . . . . 35
2.7.2 Progress Continuations . . . . . . . . . . . . . . . . . . . 36
2.7.3 Locinvs, Again . . . . . . . . . . . . . . . . . . . . . . . 37

2.7.3.1 A Final Restriction . . . . . . . . . . . . . . . . 40
2.7.4 The Decoder . . . . . . . . . . . . . . . . . . . . . . . . 41
2.7.5 Coverage Proof Rules . . . . . . . . . . . . . . . . . . . . 42



ii

2.7.6 First-Order Logic . . . . . . . . . . . . . . . . . . . . . . 51
2.7.6.1 Types . . . . . . . . . . . . . . . . . . . . . . . 53

3 The Implementation of the Open Verifier 54
3.1 A Simple Machine and Safety Policy . . . . . . . . . . . . . . . 54

3.1.1 The Machine State . . . . . . . . . . . . . . . . . . . . . 55
3.1.2 Machine Transitions . . . . . . . . . . . . . . . . . . . . 55
3.1.3 Memory Safety . . . . . . . . . . . . . . . . . . . . . . . 58
3.1.4 Execution Parameters . . . . . . . . . . . . . . . . . . . 58
3.1.5 Execution Parameters and Extension Lemmas . . . . . . 60
3.1.6 Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1.7 Verification on Actual Machines . . . . . . . . . . . . . . 62

3.2 Safety Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.1 More about the SAL Safety Policy . . . . . . . . . . . . 64
3.2.2 Generalizing the Safety Policy . . . . . . . . . . . . . . . 65

3.3 The Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.1 Trusted Components . . . . . . . . . . . . . . . . . . . . 70
3.4.2 The Director . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4.2.1 The Open Verifier Algorithm . . . . . . . . . . 72
3.4.3 The Proof Checker . . . . . . . . . . . . . . . . . . . . . 74
3.4.4 The Initializer . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Further Implementation Issues . . . . . . . . . . . . . . . . . . . 77
3.5.1 Termination . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.5.2 Memory Safety of the Extension . . . . . . . . . . . . . . 78
3.5.3 Annotations . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.6 What Do We Trust? . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Extensions 81
4.1 Cool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1.1 Programs in Cool . . . . . . . . . . . . . . . . . . . . . . 82
4.1.2 Compiling Cool . . . . . . . . . . . . . . . . . . . . . . . 83
4.1.3 Verifying Cool . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 The Cool Extension . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.1 Local Invariants for Cool . . . . . . . . . . . . . . . . . . 90

4.2.1.1 Handling Recursive Types . . . . . . . . . . . . 91
4.2.1.2 The Cool Typing Predicate . . . . . . . . . . . 92



iii

4.2.1.3 Invariants . . . . . . . . . . . . . . . . . . . . . 93
4.2.1.4 The Form of Cool’s Local Invariants . . . . . . 94

4.2.2 Proofs for Cool . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.2.1 Memory Read . . . . . . . . . . . . . . . . . . . 96
4.2.2.2 Dynamic Dispatch . . . . . . . . . . . . . . . . 98

4.2.3 Completing the Cool Extension . . . . . . . . . . . . . . 102
4.2.3.1 The Initial Coverage . . . . . . . . . . . . . . . 102
4.2.3.2 Cool’s Run-time Functions . . . . . . . . . . . . 103

4.3 Stack Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3.1 Memory Regions . . . . . . . . . . . . . . . . . . . . . . 105
4.3.2 Stack Frames and Stack Preservation . . . . . . . . . . . 106
4.3.3 Stack Slots and Stack Pointers . . . . . . . . . . . . . . . 107
4.3.4 Stack Overflow . . . . . . . . . . . . . . . . . . . . . . . 108

4.3.4.1 The Stack on a 1MB Page . . . . . . . . . . . . 108
4.3.4.2 Guard Pages . . . . . . . . . . . . . . . . . . . 109

4.4 Function Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.4.1 Using Progress Continuations . . . . . . . . . . . . . . . 112
4.4.2 Another Approach to Returns . . . . . . . . . . . . . . . 115

5 Conclusions 117
5.1 Evaluating the Open Verifier . . . . . . . . . . . . . . . . . . . . 117

5.1.1 Trustworthiness . . . . . . . . . . . . . . . . . . . . . . . 118
5.1.2 Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.1.3 Scalability and Usability . . . . . . . . . . . . . . . . . . 120

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2.1 Virtual Machines . . . . . . . . . . . . . . . . . . . . . . 121
5.2.2 Typed Assembly Language (TAL) . . . . . . . . . . . . . 122
5.2.3 Foundational Proof-Carrying Code (FPCC) . . . . . . . 122

5.3 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Bibliography 127



iv

Acknowledgements

It is a pleasure to thank my advisor, George Necula. His encouragement
and guidance made this work possible, and indeed it reflects our long-time joint
effort. I am especially grateful to George for his willingness to take on a student
with an unusual background, unusual circumstances, and unusual prospects.

Bor-Yuh Evan Chang joined our project and provided many valuable in-
sights in our conversations. Evan has supervised the construction of the Cool
extension. Several sections of this dissertation were developed from joint work
with George and Evan, notably parts of the Introduction, Section 3.4.2, Sec-
tion 4.1.3, and Section 4.2. Evan in particular designed Figure 3.4, and initially
worked out the examples of Section 4.2.

Kun Gao provided a great service in his work on the GUI used for the Open
Verifier. It has proven an invaluable development tool. Kun has also worked
on the Cool extension.

Adam Chlipala worked on the TAL extension, and our conversations have
been very helpful. Adam provided many useful corrections to an early draft of
this dissertation.

When I use “we” in this dissertation, I intend to indicate my view of the
consensus opinion among those working on the implementation of the Open
Verifier: George, Evan, Kun, Adam, and me.

At Berkeley I was very lucky to have Jeremy Bem and Russell O’Connor as
fellow students in the Logic Group, who also think that computation needs to
be taken seriously to understand logic. They were both very influential in my
understanding of and education in logic.

I would like to thank Professor Ras Bodik for extensive comments on a draft
of this dissertation.

Finally, I must thank my wife, Claire McConnell, for everything.



1

Chapter 1

Introduction

Various mechanisms exist for enforcing that untrusted code satisfies basic
but essential security properties, such as memory safety. Without memory
safety, untrusted code can interfere with the enforcement of higher-level security
properties. In comparing particular enforcement mechanisms, the important
metrics are trustworthiness and flexibility on the one hand, and what I will
call scalability on the other. Trustworthiness means that we would like to
believe that the enforcement mechanism actually works; that it is unlikely to
have (potentially exploitable) bugs, etc. This can generally be measured in a
very simple way by considering the amount of trusted code required to use the
enforcement mechanism, its trusted code base (TCB)—the more lines of code
required, the more likely it is to have bugs. Flexibility means that we do not
want to restrict the structure of the untrusted code, or require that it come
from one source language or compilation strategy. This reflects the fact that
software systems tend to have components written in more than one language,
particularly their runtime support routines. There is also value in flexibility
with respect to the safety policy being enforced, so that the same mechanism
can be adapted to handle more complicated issues such as resource usage.

By scalability I mean that we want a security mechanism which is practical;
it needs to be useful for realistic (and in particular large) programs. This en-
compasses a number of factors, notably efficiency of execution (for mechanisms
using dynamic checks on the program) and efficiency of verification (for mech-
anisms using static checks). For mechanisms which require the code producer
to provide extra information along with the untrusted code—such as the proofs
of proof-carrying code—we also must consider efficiency of transmission, and
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usability or efficiency of development : how much of a burden is placed on the
code producer to develop the extra information needed to pass the security
mechanism.

Virtual machines. Consider, for example, enforcement strategies which re-
quire the whole untrusted program to be expressed in a single “trusted” typed
intermediate language, such as the Java Virtual Machine Language (JVML) [24]
or the Microsoft Intermediate Language (MSIL) [16, 17]. These virtual ma-
chines illustrate a kind of trade-off between trustworthiness and efficiency. The
semantics of the intermediate language will typically require some dynamic
checking such as array-bounds checks. It is easiest to implement the dynamic
checking by running the code with a trusted interpreter. The significantly re-
duced execution speed under interpretation has led to the use of just-in-time
compilers (JITs). However, a compiler is significantly more complex (and thus
more difficult to trust) than an interpreter, particularly as more and more
optimizations are used to improve the execution speed.

Where these approaches are really found lacking is in flexibility. Each of
these intermediate languages is a good target for one or more corresponding
source-level languages. Programs written in other source languages can be
compiled into the trusted intermediate language but often in unnatural ways
with a loss of expressiveness and performance [7, 18, 9]. Most importantly,
these languages enforce security by means of a fixed type system and so can
only apply to that part of the untrusted code which conforms to the given
type system; this will often not be the case for low-level or high-performance
runtime support routines.

The design of MSIL is intended to allow it to better handle multi-lingual
software. MSIL contains support for multiple languages and also permits the
straightforward compilation of low-level languages, such as C and C++, be-
cause it incorporates a low-level sublanguage. The results of such compilations
are, however, not directly verifiable and thus less privileged and more limited
in how they can interact with verified code. Moreover, this flexibility increases
the complexity of the intermediate language. For example, MSIL includes eight
distinct forms of function calls, including direct, virtual, interface virtual, and
indirect calls, along with tail versions of these. Finally, not surprisingly, MSIL
is still not perfect for every imaginable source language. The ILX project [40]
suggests that MSIL could be extended with, among other features, two addi-
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tional forms of function call to better support the compilation of functional
higher-order languages. Similar extensions have been proposed for supporting
parametric polymorphism [10, 20]. There is a strong temptation to create an
intermediate language type-system that is as expressive as possible because it
is hard to change the type system after many copies of the virtual machine are
deployed.

Proof-carrying code. Proof-carrying code (PCC) [32, 29, 30] allows a code
producer to associate to a program a machine-checkable proof of its safety.
As a security enforcement mechanism, PCC is typically envisioned as allowing
the code producer to send executable code, along with an encoding of a proof,
to the code consumer. The code consumer then uses some trusted software
to analyze the untrusted code and produce a safety theorem, a proof of which
witnesses the safety of the code. Finally the code consumer uses a trusted proof
checker to check that the accompanying proof is a valid proof of the correct
safety theorem.

Virtual machines can be seen as specific instances of PCC. The bytecode
sent to a virtual machine encodes both the executable code (via the trusted
interpreter or JIT) and its proof of safety (to be checked by the trusted byte-
code verifier). Of course in general usage “proof-carrying code” tends to im-
ply systems in which the proofs are more directly representations of proofs in
formal logic. The key benefit of proof-carrying code, especially in its more
general forms, is that more of the burden of certifying safety is shifted from
the consumer to the producer, allowing the consumer to perform complicated
verifications using a much smaller trusted code base.

The first implementation of PCC was the Touchstone system [11], which
verifies that optimized native-machine code produced by a special Java compiler
is memory safe. The trusted side uses a verification-condition generator (VC-
Gen) to examine the program and produce its safety theorem. On the untrusted
side, the certifying compiler automates the generation of the safety proof. The
Touchstone system is able to verify quickly even programs of up to one mil-
lion instructions. This level of scalability has been achieved through careful
engineering of the data structures used in the implementation of the verifier
along with a number of novel algorithmic “tricks”. This does mean that the
verifier code, while still much smaller than an alternative trusted compiler, is
far from being easy to understand and trust. In fact, there were errors [22] in
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that code that escaped the thorough testing of the infrastructure. Moreover,
the Touchstone verifier is specifically engineered to the Touchstone certifying
compiler for Java, dramatically limiting any ability to extend the system.

PCC was taken in a different direction with foundational proof-carrying
code (FPCC) [5, 25, 6, 4, 1], which aims to maximize the trustworthiness and
flexibility of the system. In Touchstone (and with bytecode verifiers for that
matter) there is still a significant amount of analysis performed by the trusted
component (the VCGen in Touchstone) which produces the safety theorem
about the untrusted code. FPCC on the other hand reduces the trusted code
base to a minimum. The semantics of the target machine and the safety policy
are directly encoded as definitions in formal logic; then producing the safety
theorem is a trivial matter of saying that the machine integers, which constitute
the untrusted code, are in fact safe according to those definitions. No program
analysis at all is performed by the trusted infrastructure; the trusted code base
comprises only the aforementioned logical definitions, and the proof checker.

The cost of the enhanced trustworthiness and flexibility of FPCC is the
difficulty of developing the necessary proofs of safety, which must completely
describe in the foundational logic whatever mechanisms (for instance, type
systems) are used to establish safety. Rather fancy mathematical machinery has
been invoked to handle e.g. mutable recursive types [6, 1]. Partly in reaction to
the difficulty in producing FPCC proofs as originally envisioned in [5], another
group has developed syntactic FPCC [19, 39, 43]. Syntactic FPCC does not
offer a new architecture but a new and hopefully easier approach to organizing
and developing the foundational proofs, which illustrates neatly that purely
logical questions may have engineering impact in this field.

Both the original (semantic) and syntactic approaches to FPCC are sub-
jects of ongoing research, and it is clear that the development of FPCC is
significantly more labor-intensive than the development of Touchstone. The
extra engineering effort required to achieve that level of scalability may be
even more costly.

The Open Verifier. My thesis work has been motivated by two main ideas:

1. that it should be possible to work towards the trustworthiness and flexi-
bility promised by FPCC, while still taking more-or-less direct advantage
of the substantial engineering which enabled Touchstone to scale to large
programs; and
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2. that ideas from PCC could provide a better approach to a truly generic
virtual machine.

The result is the Open Verifier system which I describe in this dissertation. I
draw particular attention to its architecture, its logic, and the proof technique
we have used with it.

First, the Open Verifier provides a particular architecture for an extensible
security enforcement mechanism. It slightly generalizes the PCC model by re-
quiring, not that the code producer provide some representation of a formal
proof of safety, but in fact that the code producer provide a verifier—as exe-
cutable code. Then the trusted components of the architecture work together
with the untrusted verifier (called the extension) in such a way that the final
verification can be trusted.

Compare this with typical virtual machines, which specify not only the low-
level safety policy of interest (i.e., memory safety), but also fix one particular
mechanism that is sufficient for enforcing it (i.e., a particular strong type sys-
tem). The Open Verifier allows the producer of the untrusted code to choose
the mechanism by which the low-level safety-policy is enforced, with complete
control over the type system used or even whether a type system is used at all.
After all, who is in a better position to tell what mechanism works best for one
particular program? Simply selecting among several built-in mechanisms may
not be sufficient or even desirable. By using a simple untyped intermediate
language—possibly the machine language for the target machine—fewer con-
straints are placed on the code producer. This also allows the code producer
to perform optimizations that must traditionally be done by JITs.

Sending a verifier rather than a proof offers engineering advantages by re-
ducing concerns about efficiency of the transmission of potentially large proofs.
In particular one avoids the complications necessary for proof compression and
decompression [33, 35]. Instead, the primary scalability concern, besides the
cost of developing the untrusted extensions, is in the efficiency of the verifica-
tion process; but as execution time is less expensive than transmission time,
this is the right trade-off to make. Moreover, none of the generality of PCC is
lost; consider the degenerate extension which carries only the explicit particular
proofs for the program in question.

The challenge is to ensure the soundness of a verification process which uses
untrusted components, while trying to control the additional burden placed
on the writer of the extension—ideally, we would like writing the untrusted
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verifier to be not many levels more difficult than writing a bytecode verifier for
a typical virtual machine. One obvious solution is to verify the correctness of
the verifier itself, but this would be impractical for realistic verifiers. At the
same time, this approach would indirectly impose restrictions on the design and
implementation of the extension. We would like to use an untrusted verifier
as a black box, ignoring whatever algorithms, data structures, or heuristics
it uses internally, or even the language in which it is written. The technique
of runtime result checking [42] makes this possible and has already been used
successfully for the problem of verifying the correctness of compilations [37, 31].
Instead of verifying the verifier itself, we structure the verification as a series
of queries that the extension has to answer. A small trusted module poses the
queries in such a way that it is able to check the correctness of the answers with
respect to the low-level safety policy, typically requiring that each answer come
with a proof of its correctness written in a suitable logic. For instance, when
enforcing a type system, the queries reduce to typing judgments for various
subexpressions and their proofs are typing derivations.

Second, the Open Verifier also uses a particular logical mechanism for com-
munication between the trusted and untrusted components. The goal has been
to structure the logical development to make feasible the development of the
untrusted verifiers. The key development here is the Open Verifier’s notion of
local invariant, a logical description of a particular state of execution, which car-
ries also some partial-correctness assertions about possible future states which
can be considered safe.

For instance, Touchstone relies exclusively on Horn logic whereas FPCC
has used rather sophisticated higher-order logic; our work with the Open Ver-
ifier has shown that the logical strength submits to a finer analysis, such that
most per-program proofs occur in Horn logic, per-compiler proofs in first-order
logic, and most of the use of higher-order features is restricted to the once-only
soundness proof of the Open Verifier framework. This is true even for programs
that manipulate function pointers directly.

Finally, we have used a particular proof technique for structuring the proofs
to be given by extensions for the Open Verifier. By analogy with software engi-
neering these might be called proof engineering considerations. The approach
we have used are inspired by the structure of Touchstone, and are distinct
from both semantic and syntactic FPCC. Like semantic FPCC, we use seman-
tic definitions of the typing predicate; however, circularities are broken by an
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intensional approach to recursive types, which eliminates many needless com-
plications. Moreover, in contrast with FPCC, and also with approaches to
safety based on TAL [28, 27, 26, 15], our proofs tend to stay more at the level
of predicate logic, descending into the type system only locally. This has some
apparently superficial ramifications—such as the fact that we prefer direct use
of equality to the use of singleton types—but also points to a distinct approach
to using type safety to enforce memory safety: Instead of proving a global type-
soundness theorem and establishing that the entire program is well-typed, we
use types locally to establish local safety conditions, using definitions and lem-
mas which relate particular local assertions about types to the state of the
memory. Even absent the Open Verifier architecture, the proof-development
approach it has inspired could lead to a third way in FPCC.

How to read this dissertation. The next three chapters provide the tech-
nical developments of my thesis. Chapter 2 presents the logical developments
needed to support the architecture, most importantly the soundness theorem
and the notion of local invariant. Chapter 3 gives particular instantiations
for the necessary logical notions, introduces the algorithm used to implement
the trusted components of the Open Verifier architecture, and discusses other
implementation-related issues. Chapter 4 concerns itself with the untrusted ex-
tensions, and is primarily an effort to demonstrate by example that extensions
can be feasibly written which handle interesting programs.

In Chapter 5 I conclude with some preliminary results from our prototype
implementation of the Open Verifier, a further discussion of related work, and
some suggestions for future progress.

Please note that the body of the dissertation is organized according to
logical dependence rather than motivation. Reading it straight through would
be appropriate for someone who is already familiar with the basic ideas and
wants to solidify an understanding of the details. For the more typical reader,
who wants to develop an appreciation of the basic ideas, I suggest the following
approach:

1. Read the remainder of this Introduction, a high-level overview of the
Open Verifier.

2. Read Section 2.2, which describes a simplified version of the logical struc-
ture of the safety verifications produced by the Open Verifier.
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3. Read Section 3.4 which describes the algorithm implemented by the
trusted code of the Open Verifier. (This will require a willingness to
ignore references to the more complicated logical structure introduced
later in Chapter 2.)

4. Read Section 4.1 and Section 4.2 which describe a typical implementation
of an untrusted extension for the Open Verifier.

Those sections should suffice to provide a good feel for the basics of the system;
other sections can then be read as needed to fill in desired details.

1.1 Overview of the Open Verifier

The goal of the Open Verifier is to create a flexible security enforcement mech-
anism, based on the idea that clients should be able to customize the code
verification process to the particular source language and compilation strategy
used to produce the untrusted code.

At the same time, the Open Verifier is intended to be a practical tool; clients
need to be able to provide with reasonable effort the customization information
for realistic languages and compilers. This rules out theoretically attractive
possibilities, such as requiring the client to send a code verifier along with a
proof of its correctness with respect to the safety policy. In order to increase the
usability of the tool, we are willing to incorporate into the trusted infrastructure
elements which are likely to be common to many possible customizations. This,
however, is balanced by the criterion that the Open Verifier should have a
reasonably small trusted code base.

1.1.1 The Basic Idea

The Open Verifier requires code producers to send a code verifier for their
untrusted code, to ensure that the code satisfies the safety policy. The code
verifier is sent as executable code.

How is it possible to use an untrusted verifier to produce a trustworthy
verification?

As mentioned above, proving the correctness of the verifier seems too dif-
ficult. Instead we require that the untrusted verifier produce intermediate
information which can be used by the Open Verifier to check the validity of
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each individual verification. In essence, the verifier must be a proof-generating
verifier; it must emit a proof, to be checked by the trusted components of the
Open Verifier, that the particular code in question is safe. For increased us-
ability, certain basic common tasks (such as parsing the code) are performed
by the trusted infrastructure itself, requiring no proof.

In practice, rather than creating a single monolithic proof to be checked by
the trusted proof checker, we have found it more convenient to have the trusted
framework send particular requests (such as proof obligations) to the untrusted
verifier, which responds with the particular proofs and information necessary.
We call the untrusted verifier an extension to the Open Verifier, and consider
that the extension and the trusted components work together to produce the
final verification.

In principle an extension could be created for every new piece of untrusted
code to be verified. In practice we expect that an extension will be created for
a specific source language and compilation strategy, and then will be used to
verify all code produced by a given compiler. Note also that we expect to be
able to write extensions to verify the output of existing compilers, rather than
having to write a new certifying compiler from scratch.

1.1.2 Structure of the Verification

The requests posed to the extension essentially mandate a form of verification
based on abstract interpretation or symbolic evaluation. The verifier must
maintain an abstract state representing the state of the program at a certain
point in execution. Then it simulates the effect of each execution step on
the abstract state. To ensure that the process is finite, the abstract state
at join points (such as the start of a loop) must be made sufficiently general
that a single evaluation of the loop corresponds to all possible evaluations.
(In practice, a loop may be evaluated several times, each time weakening the
abstract state at the join point until it is sufficiently general.) Finally the
verifier must check that for potentially unsafe execution steps (such as memory
accesses under a memory-safety policy), the abstract state before the execution
step guarantees that taking the step is always safe. This structure is commonly
used, notably by bytecode verifiers for virtual machines.

A verifier using this strategy could be broken down into the following parts.
For each abstract state to be considered, the verifier must
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1. parse the instruction to be executed—this assumes that a given abstract
state uniquely specifies the instruction to be executed;

2. check that, in any concrete state represented by the current abstract
state, the instruction is safe to execute; and

3. determine the abstract states corresponding to the new state (or states, at
branch points) which could result from the execution of the instruction.
At join points, this may mean re-using abstract states already considered,
to ensure that the verification is finite.

I call this process, of handling a given abstract state, scanning the state. Finally
the verifier must

4. produce an initial abstract state which corresponds to any possible entry
state of the program; and

5. ensure that the iterative process, of scanning new abstract states which
result from scanning, is complete. This ensures that all reachable code in
the program is considered.

An example of using this verification technique is given in Section 4.1.3.
In order to use an untrusted extension, for each of these five requirements

we must either

1. meet the requirement with trusted code; or

2. require the extension to give enough information that the way it meets
the requirement can be checked. This will be a proof of one form or
another.

In the Open Verifier, the first task (parsing) and the last task (iterative com-
pletion of the verification) are left entirely to trusted code. The other three
tasks (ensuring local safety, determining next states, and producing an initial
state) are handled by requiring a proof that in each particular case they have
been done correctly. Note that this is, of course, very different from requiring a
proof that the extension code correctly implements an algorithm which always
does it correctly; in particular, we don’t mind using an unsound extension, as
long as it can prove that it is sound for each particular verification step of the
program being considered.
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In the following sections I discuss the various verification tasks, and the
manner in which they are performed by the Open Verifier. First it is necessary
to describe the notion of abstract state used.

1.1.2.1 Local Invariants

To facilitate the communication between the untrusted extension and the
trusted components of the Open Verifier, we must specify an appropriate no-
tion of the abstract state describing each step of verification. Essentially, we
use logical predicates of machine states; the abstract state can be understood
as specifying the collection of concrete machine states which satisfies the pred-
icate.

The term that I use for the abstract states is local invariants, often abbrevi-
ated locinvs. Each locinv specifies certain facts which hold of certain machine
states at specific points during the execution of the program. In practice we
use locinvs which describe some set of machine states at a particular local point
in the code, a particular value of the program counter. In principle however,
there may not be anything particularly “local” about a locinv. For instance,

λρ.True

holds of all states ρ anywhere during the execution of any program, safe or
otherwise—though again, the locinvs useful in practice are local in that they
specify certain facts about states at a particular point in the program. Mean-
while, a locinv like

λρ.(pc ρ) = 5 ∧ (P ρ)

(where pc ρ is the program counter of state ρ) shouldn’t be understood as
necessarily claiming that all states ρ that reach line 5 will satisfy P . It is a
merely a description of certain states, namely those which are at line 5 and
satisfy P . One way to understand the job of the extension, is to see it as
building a list of locinvs which it then does claim are complete, in that every
state during program execution will satisfy one or more of the locinvs; but this
list may contain more than one locinv corresponding to a given location in the
program.

Other words for locinv might be “abstract state”, or “verification state”.
In this dissertation I will sometimes use continuation; particularly when one
locinv C claims the safety of another locinv D, D can be seen as an abstract
description of one way in which execution might proceed.
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As a matter of fact, locinvs need to be somewhat more complicated than
merely predicates of machine states. We wish to handle such assertions as
the claim that whenever execution reaches the start of a function, the return
address register holds a code address which is safe to execute. Since the entire
verification process is about establishing the safety of executing the code, some
care needs to be taken to avoid circularity in such assertions. These issues are
discussed in Section 2.3.

The type of locinvs is described in full detail in Section 2.7.

1.1.2.2 Parsing

Given an locinv which specifies a certain location in the untrusted code, the
most basic task is to determine what instruction is going to be executed. In
general, the untrusted code could be in its final compiled form—as a sequence
of machine integers representing the assembled instructions—or it could be
sent in some sort of intermediate language which is then compiled, by trusted
components of the framework, into machine code. The second possibility is
closer to the behavior of virtual machines, where the intermediate language of
bytecodes is designed so that the very form of the bytecodes prevents certain
behaviors. In our prototype implementation of the Open Verifier, we use the
assembly language of the target machine, thus assuming a trusted assembler. It
would not be substantially harder—and would not require substantially more
trusted code—to verify machine code instead.

However, we do not verify the target instructions directly. That would re-
quire writing both the trusted components and the extensions differently for
each target architecture. Instead we translate the assembly instructions of the
untrusted code into a generic language called SAL (the Simple Assembly Lan-
guage). Both the trusted and untrusted verifier components verify SAL pro-
grams. Thus, in order to trust the Open Verifier, one must trust the translator
to produce a SAL program, the safety of which guarantees the safety of the
original program in the language of the target machine. Whereas when working
with bytecodes, each bytecode may correspond to a sequence of machine in-
structions, when working with SAL each machine instruction decomposes into
one or more SAL instructions; for example, a stack pop instruction would de-
compose into separate SAL instructions for reading a word from memory and
changing the stack pointer. Since SAL is so simple, and is finer-grained than
machine instructions, it is not difficult to trust that the translator is correct.
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SAL is described further in Section 3.1.

1.1.2.3 Local Safety Conditions, Next States, and Initial State

Most of the verification effort lies in the iterative exploration of the code. Given
a particular locinv, once the parser determines the instruction to be executed,
the verifier must establish that it is safe to execute the instruction, and must
produce a new locinv (or locinvs) corresponding to the state after the instruc-
tion is executed. I call this scanning the locinv. In the Open Verifier, a trusted
component called the decoder determines what is to be proved; the extension
then must meet those proof obligations.

The decoder’s first job is to provide local safety conditions. For example,
suppose we are scanning a locinv C which asserts that ry = 10, and the current
instruction is write rx ry, that is, to write the value in register rx into the
contents of memory at address ry. The decoder will emit the proof obligation
addr 10, where addr is a suitably-defined predicate which holds only of accessi-
ble memory addresses. The extension must then produce a proof to meet this
obligation.

The decoder also establishes the semantics of the instruction being executed,
by producing a description—in fact, a locinv or locinvs—of the state after
executing the instruction. In this respect the decoder acts as a strongest-
postcondition generator. For the memory-write example above, the decoder’s
output continuation will be

∃Mold.
(

M = (updMold ry rx)
)

∧ C[M 7→Mold].

That is, in the new state, we know that the memory is the result of updating
the old memory with value rx in address ry; and we also know that all the facts
asserted by C still hold as long as all references to the memory are considered
to be about the old memory. This is the standard strongest postcondition for
an assignment. See Section 3.3 for more examples concerning the decoder.

The extension will also produce continuations describing the next state.
The Open Verifier trusts the continuations produced by the decoder, but will
actually use the continuations produced by the extension in order to continue
the iterative scanning process. The extension must establish that its continu-
ations “cover” the decoder’s; that they include more possible concrete states,
and so are more general, in fact logically weaker than the decoder’s next states.
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It may be counterintuitive that the trusted component will produce stronger
results than the untrusted component. The decoder performs a very simplis-
tic symbolic evaluation, finding the strongest postcondition of executing the
instruction on the input state. The extension on the other hand is willing
to forget information; for instance it will not necessarily record the contents
of a given address in memory, even directly following a memory write, but
instead might only record the fact that the memory is well-typed in the appro-
priate sense. Finding the appropriate weakening is necessary for verifying loop
structures using only a small finite number of loop traversals. Furthermore,
to handle indirect jumps the decoder produces an output locinv which doesn’t
specify the next instruction to be executed, so can’t be scanned in the way
here described. The extension will have to prove that the address jumped to
is safe; for instance, it might be able to prove that it is in fact one of a short
list of specific addresses, such as when the indirect jump implements a switch
statement. For examples of how the extension might produce locinvs for the
next states, and prove that they cover the decoder’s locinvs, see Section 4.2.

The initial state of the verifier is handled similarly. A trusted component
called the initializer produces a locinv which gives a detailed description of
the initial state of execution; the extension produces its own locinvs describing
the initial state, which are the ones which will be iteratively scanned. The
extension must prove that its initial locinvs cover the one provided by the
trusted framework.

1.1.2.4 Bringing It All Together

The Open Verifier must ensure that all the individual verifications of single ex-
ecution steps result in a complete verification of the program. This is handled
by a trusted component called the director. The director accumulates the ex-
tension’s locinvs and iteratively scans them until no new locinvs are produced.
It checks the proof of each local safety condition, and checks each coverage
proof to ensure that the extension’s locinvs are sufficient to describe all states
possibly resulting after one step of execution. The algorithm for the director
is discussed in Section 3.4.

The soundness of the Open Verifier is proved, at a purely logical level, in
Section 2.2 (where certain complications are omitted) and Section 2.6 (in full
detail).
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1.1.3 Building the Extension

It’s not enough that the architecture of the Open Verifier guarantees that any
verification produced with the extension is trustworthy. It’s also necessary that
extensions can be produced, with reasonable effort, to verify realistic programs.
In this dissertation I concentrate on the trusted framework, but I want to show
enough about building extensions to show that this is plausible.

Although in principle an extension could be tailored to handle a single
program, I propose that each extension will correspond to a particular source
language and compilation strategy—in effect, to a particular compiler. Proof-
carrying code is closely linked to the idea of the certifying compiler, a compiler
which produces not only executable code but also a proof of its safety. With
the Open Verifier, ready-made compilers can be used almost unchanged, with
a separate extension written to produce the verifications. (Some changes to the
compiler will be necessary to provide information—such as the typing decla-
rations of functions—which would otherwise disappear during the compilation
process.)

The effort of writing an extension can be divided roughly into four steps.

1. Write a “conventional verifier” along the lines described above in Sec-
tion 1.1.2. The step should be of comparable difficulty to writing e.g. a
Java bytecode verifier.

2. Translate the abstract state of the conventional verifier into the frame-
work of locinvs. This requires designing logical predicates which describe
the abstract state, usually including typing predicates. The most diffi-
cult part of this step is making explicit certain invariants which may be
implicit in the conventional verifier. For instance, if the conventional ver-
ifier guarantees the well-typedness of memory, each locinv must contain
an explicit assertion that the memory is well typed.

3. Write a logic program which can be used to automatically establish the
proofs required by the Open Verifier. We use an untrusted logic inter-
preter called Kettle which can be used as an automated theorem prover
given a set of rules to treat as lemmas. These rules will contain a tran-
scription of the typing rules of the type system being used, as well as rules
necessary to prove that explicit invariants (such as the well-typedness of
memory) are maintained.
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4. Write the definitions of the predicates introduced in step 2, and prove the
lemmas introduced in step 3. These definitions and proofs are produced
by hand; currently we use the interactive proof assistant Coq.

Observe in particular that the proof effort is divided into per-program
proofs, which are produced automatically, and per-compiler proofs, which have
to be produced by hand. See Section 4.2 for examples from converting a par-
ticular conventional verifier into an extension.
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Chapter 2

The Logical Basis of the Open
Verifier

In this chapter I will develop the formalism to be implemented by the Open
Verifier. I will introduce the appropriate abstract notions corresponding to the
safety of a program, and prove Theorem 2.6.11 stating a set of conditions which
guarantee safety. The role of the untrusted extension is to provide proofs of
these conditions; the role of the trusted infrastructure is, most importantly, to
check the given proofs, but also (as I will discuss in Section 3.4) to provide
some of the iterative behavior that will be common to all verifications.

I begin with a simplified version of the development; then in later sections
I discuss refinements, specializations, and generalizations needed to obtain a
logical basis for actual verification work, culminating in Theorem 2.6.11.

2.1 Logical Preliminaries

In general I work within the Calculus of Inductive Constructions [13, 14], which
is the logic implemented by the Coq proof assistant [12]. This is a higher-order
logic including sorts Set and Prop, which are used for sets and propositions,
respectively. The sorts Set and Prop themselves belong to the sort Type, but
the word “type” will be used for values of any of the sorts. The logic allows
types and predicates to be defined by induction, as the least type or predicate
closed under a given list of constructors.

Though I use this strong logic in discussing the Open Verifier framework,
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for implementation reasons it may be worthwhile to restrict extensions to using
a small fragment of the logic in presenting proofs to the trusted framework; see
Section 2.7.6.

2.2 The Simplified Formal Development

Let us assume the existence of a type

state : Set

of machine states, as well as a relation

 : state → state → Prop

describing safe machine transitions. These parameters are intended to encode
the machine semantics as well as the safety policy; in particular,  is that
subset of all machine transitions which are to be considered safe. See Section 3.2
for a discussion of what kinds of safety policies can be encoded in this way.

Definition 2.2.1. A state ρ is capable of i steps of safe progress, written
progi ρ, when any chain of  -transitions starting at ρ can be extended to at
least i steps long. That is,

prog0 ρ always holds;

progi+1 ρ ⇐⇒ (∃ρ′. ρ ρ′) ∧ (∀ρ′. ρ ρ′ =⇒ progi ρ
′).

By prog ρ is meant ∀i. progi ρ.

Note that  only needs to model the safe transitions to be made under
the control of the program to be verified. Presumably the program may return
control to an operating system after its execution has finished; this would be
considered safe, and so to use the above definition we might model the further
execution in the OS as a simple infinite  -loop. The actual behavior of the
machine at that point is no longer relevant to the safety of the program in
question.

Safety of a program is proven by establishing that ∀i. progi ρ0 for every
possible initial state ρ0. I shall not introduce any formal type corresponding
to the notion of a “program” to be verified. Instead, I will assume that any
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program determines some logical description of all possible initial states, some
C0 : state → Prop such that (C0 ρ0) holds of every possible initial state ρ0.
The program for which C0 describes its initial states will be safe if

∀ρ0.(C0 ρ0) =⇒ ∀i. progi ρ0.

This is the key statement that must be proved to verify the safety of a program.

The extension will work with a type of verification states, corresponding
typically to facts known to hold at some particular point during program exe-
cution. I call these local invariants and assume the existence of some type

locinv : Type.

I will not specify the type locinv, but assume that there is a satisfaction
relation by which any locinv can be regarded as a state predicate:1

|=: state → locinv → Prop.

For a state ρ and a locinv C, I write ρ |= C for the statement that this relation
holds. It is only this satisfaction relation which matters about locinvs for the
theorem I am establishing; and in examples I will typically write locinvs in the
form of state predicates.

Definition 2.2.2. A locinv C is safe for i steps, written safei C, when

∀ρ.(ρ |= C) =⇒ progi ρ.

By safeC is meant ∀i. safei C.

With this definition, we can verify a program by proving ∀i. safei C0, for
an initial locinv C0 such that all possible initial states satisfy C0.

Definition 2.2.3. A list E of locinvs is said to cover a list D of locinvs, written
E coversD, when

∀i.
(

∧

E∈E

safeiE
)

=⇒
(

∧

D∈D

safeiD
)

.

1I do this rather than simply defining locinv as a state predicate, because I will eventually
want to use a particular notion of locinvwhich is more restricted, and automatically enforces
certain invariants. See Section 2.7.
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The Open Verifier framework involves using a decoder to determine whether
and which safe transitions are possible from the states satisfying a locinv. The
decoder reflects the definition of the state transition relation  , in terms of
locinvs; in the implementation it is used to replace reasoning about  , so that
the extensions only need prove specific claims required by the decoder, rather
than reasoning about  directly.

Definition 2.2.4. A decoder is a function which takes a locinv and returns a
pair, consisting of a state predicate (the local safety condition) and a list of
locinvs (the possible next states); thus a decoder is of type

locinv →
(

(state → Prop) × locinv list
)

I will sometimes use the term continuation as a synonym for locinv, par-
ticularly in the context of the decoder output, which indicates ways for the
execution to continue.

Definition 2.2.5. A decoder decode satisfies the decoder correctness property
iff, for any locinv C, where (P,D) = decodeC,

∀ρ.(ρ |= C) ∧ (P ρ) =⇒ (∃ρ′.ρ ρ′) ∧
(

∀ρ′.ρ ρ′ =⇒
∨

D∈D

ρ′ |= D
)

.

That is, for any state ρ satisfying the input locinv C, if the local safety condition
P holds, then progress is possible for at least one step, and the resulting state
will satisfy some D ∈ D.

I now introduce the key property to be established by the untrusted ex-
tension. The word “scanning” comes from the algorithm used in the imple-
mentation, where locinvs from a list are iteratively “scanned” to provide the
necessary verification about each.

Definition 2.2.6. A set E of locinvs is closed under scanning with respect to
decode if the following two conditions hold for each E ∈ E . Let (P,D) =
decodeE. Then

1. ∀ρ.(ρ |= E) =⇒ (P ρ);

2. E coversD.
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Lemma 2.2.7. If a set E of locinvs is closed under scanning with respect to
decode, and decode satisfies the decoder correctness property, then for each
E ∈ E , we have that ∀i. safeiE.

Proof. The proof proceeds by induction on the index i. The base case i =
0 holds trivially. So suppose as induction hypothesis that for each E ∈ E ,
safeiE. We will establish that for each E ∈ E , safei+1E, which will complete
the proof by induction.

Fix some E ∈ E . To show safei+1E, by definition we must show that for
every ρ such that ρ |= E, progi+1 ρ. Fix some ρ such that ρ |= E.

Let (P,D) = decodeE. By the decoder correctness property, instantiated
at our chosen ρ,

(ρ |= E) ∧ (P ρ) =⇒ (∃ρ′.ρ ρ′) ∧
(

∀ρ′.ρ ρ′ =⇒
∨

D∈D

ρ′ |= D
)

.

By condition (1) of closure under scanning, we have that (P ρ). Therefore it
is possible to make one step of progress from ρ; and any resulting state ρ′ will
satisfy some D ∈ D.

We now use condition (2) of closure under scanning, which has that
E coversD. By the induction hypothesis safeiE for each E ∈ E . Thus by the
definition of covers, safeiD for each D ∈ D.

By the definition of safe we can conclude that progi ρ
′ for any ρ′ satisfying

some D ∈ D at index i. But we have already established that this is the case
for each ρ′ resulting from our chosen ρ after one step of execution. Thus we
have established progi+1 ρ, completing the proof.

Theorem 2.2.8 (Soundness of the Open Verifier). Suppose a set E of
locinvs is closed under scanning with respect to decode, and decode satisfies
the decoder correctness property. Suppose also that E covers{C0}, where C0 is
an initial locinv for a program in the sense that for any possible initial state
ρ0, ρ0 |= C0. Then the program is safe in the sense that each such ρ0 can make
indefinite safe progress.

Proof. By the theorem ∀i. safeiE for each E ∈ E . Thus by the definition of
covers, ∀i. safei C0. The rest follows by the definitions of safety and progress.
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Later in Section 2.7 I will instatiate the type locinv and its satisfaction
relation |=. Once that is done, the role of the untrusted extension can be
understood as producing a list of locinvs, which covers an initial locinv for the
the program to be verified; and proving that it is closed under scanning with
respect to a correct decoder.

In the next few sections, however, I introduce certain complications to the
simple logical formalism presented above. Then in Section 2.6 I will re-prove
the soundness theorem for the actual formalism.

2.3 Indexing

2.3.1 The Motivation for Indexing

Commonly needed in verifications is some means of expressing the notion that
it is safe to continue execution from a certain point. For instance, when the
execution is at the beginning of a function F , it can be assumed that it is safe
to return to the address stored in the return-address register. (Typically of
course it is only safe if some function post-condition also holds, but I will omit
this consideration for now.) This can be expressed as a locinv:

λρ. (pc ρ) = F ∧ safe(λρ′.(pc ρ′) = (ra ρ)),

where ra is the return-address register.
Later during the execution of the function, the original return address might

end up stored on the stack in order that the return-address register can be used
for another function call. Then a locinv might hold such as:

λρ. ∃raorig. (sel(rM ρ) n) = raorig ∧ safe(λρ′.(pc ρ′) = raorig).

Here (sel(rM ρ) n) means the contents of memory (rM ρ) at address n (wher-
ever the address was where the return address was stored).

Consider now how this might be put to use at function call and return
points. The return works nicely; the decoder will emit a continuation such as

λρ. ∃raorig. (pc ρ) = raorig ∧ safe(λρ′.(pc ρ′) = raorig).

Call this locinv C. The extension will now face a coverage proof obligation, to
prove that C is itself safe. In fact,
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Lemma 2.3.1. safeC.

Proof. Pick some ρ such that ρ |= C. We must show that prog ρ.
Since ρ |= C, then in particular

∃raorig. (pc ρ) = raorig ∧ safe(λρ′.(pc ρ′) = raorig).

Pick some raorig witnessing this existential. Since (pc ρ) = raorig then ρ |=
(λρ′.(pc ρ′) = raorig). But we have that safe(λρ′.(pc ρ′) = raorig), and so it
follows that prog ρ. This completes the proof.

Corollary 2.3.2. {} covers{C}.

Essentially, C claims its own safety.
When we consider the function call itself, we begin to encounter problems.

Suppose the machine is about to execute a jump instruction to F , which we
want to interpret as a function call, where the return will go to line n. Let

D = λρ. (pc ρ) = F ∧ (ra ρ) = n

E = λρ. (pc ρ) = F ∧ safe(λρ′.(pc ρ′) = (ra ρ))

A = λρ. (pc ρ) = n.

D represents the decoder continuation following the jump. The extension would
like to establish that

{E,A} covers{D}.

In fact, we can establish

Lemma 2.3.3. safeE ∧ safeA =⇒ safeD.

Proof. Pick some ρ such that ρ |= D. Then (pc ρ) = F and (ra ρ) = n. Since
safeA we have that

safe(λρ′.(pc ρ′) = (ra ρ)).

Thus ρ |= E. Since safeE, we have that prog ρ. It follows that safeD,
completing the proof.

However, the coverage claim is stronger, that

∀i. safeiE ∧ safeiA =⇒ safeiD.
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This stronger claim does not hold. For a counterexample, consider a safety
policy in which one step of safe progress can be made when the program counter
is n, but no safe progress can be made when the program counter is F , and
moreover there is no state from which two steps of safe progress are possible.
Then E is contradictory (since its internal claim of indefinite safety cannot
hold), and so is safei for all i. In particular safe1E, safe1A, and yet not
safe1D.

It is necessary to re-write the formal definitions such that

1. the soundness theorem is provable;

2. it is possible to use internal safety claims of locinvs (as for the function
return example above);

3. it is possible to establish internal safety claims of locinvs (as for the
function call example above).

I have not discovered a way to do this without using an indexed notion of
locinv satisfaction, where a locinv can be treated as a natural-number indexed
predicate of states.

A similar notion of indexing was independently but previously introduced
by Appel and McAllester in [6].

2.3.2 Indexed Local Invariants

So let us assume that there is some type

locinv : Type,

together with an indexed satisfaction relation

|=: nat → state → locinv → Prop,

where ρ |=i C is read “ρ satisfies C at index i”. Note that it would be mislead-
ing to say “ρ satisfies C for i steps”, as if it were being claimed that certain
properties will hold for the states obtained from ρ after several steps of exe-
cution. Appel and McAllester ([6]) have used indexing in this way, but I will
always work with locinvs where the index is used to claim that certain other
states can independently make i steps of safe progress. For instance, in the
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function call example, I will use a locinv C for the start of a function F such
that

ρ |=i C ⇐⇒ (pc ρ) = F ∧ ∀j ≤ i. safej(R ρ),

where (R ρ) is a locinv about the return state, such that

ρ′ |=i (R ρ) ⇐⇒ (pc ρ′) = (ra ρ).

In this example, the index i does not refer to steps of progress from the state
ρ, but rather from the other state at function return. Thus to repeat, the
satisfaction relation should not be understood as “for i steps” but simply as
“at index i”.

In future examples I will write indexed locinvs directly as the indexed state
predicates induced by the satisfaction relation |=. For instance the locinv C

above is

λi. λρ. (pc ρ) = F ∧ ∀j ≤ i. safej
(

λi′.λρ′.(pc ρ′) = (ra ρ)
)

.

In many examples the index is unused, insofar as the locinv defines the same
state predicate at every index. In such cases I will freely omit reference to the
index. In other examples it may be understood that the index is used in the
same particular way as in C, to index an internal safety claim; when the index
is not explicitly important, I will continue to write, for example, C as

λρ. (pc ρ) = F ∧ safe
(

λi′.λρ′.(pc ρ′) = (ra ρ)
)

.

(In all examples in this thesis, use of safe inside of a locinv implies an indexed
rather than an unindexed claim.)

It is sensible to assume that the satisfaction relation satisfies the following
property of monotonicity :

Definition 2.3.4. An indexed satisfaction relation |= is monotonic if, for every
state ρ and locinv C,

∀i. ρ |=i+1 C =⇒ ρ |=i C.

This property is not necessary for soundness, but it is necessary to allow
for a correct decoder when using the type of locinvs used in implementation;
see Section 2.7.4.

One appropriate instantiation of type locinv is simply as indexed state
predicates, nat → state → Prop, where the satisfaction relation is defined so
that ρ |=i C iff ∀j ≤ i.(C j ρ). It is trivial to show that this is monotonic.

To complete the indexed definitions, we must re-define safety:
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Definition 2.3.5. A locinv C is safe for i steps, written safei C, when

∀ρ. ρ |=i C =⇒ progi ρ.

and decoder correctness:

Definition 2.3.6. A decoder decode satisfies the decoder correctness property
iff, for each locinv C, where (P,D) = decodeC,

∀i.∀ρ.(ρ |=i+1 C) ∧ (P ρ) =⇒ (∃ρ′.ρ ρ′) ∧
(

∀ρ′.ρ ρ′ =⇒
∨

D∈D

ρ′ |=i D
)

.

That is, for any ρ satisfying the input locinv C, if the local safety condition P

holds, then progress is possible for at least one step, and the resulting state will
satisfy some D ∈ D, at an index one less than that by which the original state
satisfied C.2 Note especially the change in the index; but see Section 2.7.4,
where the definition is reconsidered using the same index in both occurences.

The soundness theorem, including indexing and certain other changes, will
be established in Section 2.6. The handling of function calls and returns is
worked out fully in Section 4.4.

Indexing should be considered a purely technical device, and in that sense
it causes a certain amount of distraction, as all of the proofs get polluted with
indices. In Section 2.7 I will show a way to minimize this problem. Concep-
tually, one’s intuitions are usually well-enough served by forgetting about the
indexing, and, in particular, treating the internal safety claims of locinvs (such
as the claim that the return continuation is safe) as if they were unindexed.

2.4 Augmented Decoder Input

Recall that one of the goals of the decoder is to have sufficiently detailed output
that the extension does not have to refer directly to the notion of the state

2The property can be generalized in at least two ways. First, we might allow decoders to
describe the next states after possibly more than one step—by taking ρ′ to be some k steps
from ρ and to satisfy D at index i + 1− k. Second, we might allow the local safety condition
P also to be parametrized by the index i. We have not found either generalization useful.
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transition relation  ; instead, the decoder can be considered to encode all
possible reasoning about  . In this section I consider a change to the notion
of the decoder which will allow the construction of such decoders.

Consider a typical machine where the state transitions can be defined simply
in terms of the instruction to be executed in a given state. Usually of course
the instruction is encoded in the value stored in memory at the location given
by a specified program-counter register. I will define a decoder for a specific
such machine in Section 3.3, but for now I put forth this very general example.

Assume that there is a type inst of instructions. Any state ρ specifies an
instruction instat ρ. Any i : inst specifies a state transition  i: state →
state. Observe that i is defined even on input states ρ for which instat ρ 6=
i; this corresponds to the common-sense view of instructions whereby they
specify changes to a state independent of the contents of the state. The full
state transition  is simply given by

ρ ρ′ ⇐⇒ ρ instat ρ ρ
′.

Observe that  is functional, so progress can always be made; for the sake of
the example any execution will be considered safe.

How can we specify a decoder for this machine? The idea is to write the
decoder as a strongest-postcondition generator; thus we could have decodeC =
(True, {D}) where ρ |=i+1 D iff

∃ρ0.(ρ0  instat ρ0 ρ) ∧ (ρ0 |=i C).

It is trivial to establish that this decoder satisfies the decoder correctness prop-
erty. However, it fails to satisfy a meta-logical criterion for the decoder, namely
that the decoder be used to replace all reasoning about  in the extension’s
proofs.

The solution I propose is that the extension be required to give an extra
piece of information to the decoder, namely that it specify the instruction to be
executed. Then the decoder’s output can explicitly describe the effects of that
instruction in such a way that the extension need not refer directly to  to
reason about it. Such a decoder is defined for a specific machine in Section 3.3.
Here I specify the logical formalism needed to support this.

Definition 2.4.1. For τ : locinv → Type, a τ -augmented locinv is a pair
(C, t) where C : locinv, and t : τ C.
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For the instruction example, we want τ C to be the dependent type Σt :
inst.(Q t C), where Q t C ⇐⇒ (∀i.∀ρ. ρ |=i C =⇒ instat ρ = t). Then
an augmented locinv is an ordinary locinv which specifies the instruction at
any state satisfying it (and provides the proof of that fact).

Definition 2.4.2. For τ as before, a τ -augmented decoder is a function which
takes a τ -augmented locinv and returns a pair, consisting of a state predicate
(the local safety condition) and a list of locinvs (the possible next states); thus
a decoder is of type

(ΣC : locinv.(τ C)) →
(

(state → Prop) × locinv list
)

The decoder correctness property is the same as before, using the locinv
component of the augmented input. Thus the augmentation does not change
the property satisfied by the decoder output; it instead restricts the input,
and provides extra information to produce the output. Finally the property of
closure under scanning must be redefined in the obvious way in order to apply
to collections of augmented locinvs; see Section 2.6 for the complete definitions.

In the actual implementation, some trusted code automatically generates
the augmentations from a syntactic inspection of the extension’s results, so no
extra work is created for the extension. See Section 3.3.

2.5 Global Invariants

Now consider a program which does not modify its own code, or dynamically
create code. In this case the instruction to be executed depends only on the
program counter. I now consider how to use the trusted infrastructure to
enforce such a restriction. This provides benefits in terms of simplicity of
extensions, which no longer have to maintain invariants about the code in
memory, which are instead enforced by the trusted infrastructure.

Essentially we would like to have the extension give just the program
counter, rather than the instruction to be executed, in the augmented informa-
tion it gives to the decoder. Then the decoder has to maintain a global invariant
to the effect that none of the values in the program’s code have been altered—
that the addresses in the code block have the literal values corresponding to the
actual code. This example is worked out in Section 3.3, using the formalism I
will now describe.
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Assume that the type locinv comes with a satisfaction relation indexed
not only by natural numbers but by a global invariant of type state → Prop:

|=: (state → Prop) → nat → state → locinv → Prop,

where ρ |=I
i C is read “ρ satisfies C at index i with global invariant I”. The

following property is needed to motivate the term “global invariant”:

Definition 2.5.1. An indexed satisfation relation |= is correct with the invari-
ant if for every state ρ, index i and locinv C, and for every state predicate
I,

(ρ |=I
i C) =⇒ (I ρ).

Observe that this property would hold if we defined some notion of ρ |=i C

independently of the global invariant, and then let

ρ |=I
i C ⇐⇒ (ρ |=i C) ∧ (I ρ).

This is an appropriate intuition, but we may want ρ |=I
i C to be weaker than

this; for instance, we may want C to be able to claim the safety (with respect
to global invariant I) of other locinvs, and as I gets stronger such safety claims
generally get weaker. See Section 2.7.3.

Definition 2.5.2. Let I : state → Prop. A decoder decode satisfies the
(generalized) correctness property with invariant I iff, for any locinv C, where
(P,D) = decodeC,

∀i.∀ρ.(ρ |=I
i+1 C) ∧ (P ρ) =⇒

(∃ρ′.ρ ρ′) ∧
(

∀ρ′.ρ ρ′ =⇒
∨

D∈D

(ρ′ |=I
i D)

)

.

That is, for any state ρ satisfying the input locinv C (and the global invariant
I), if the local safety condition P holds, then progress is possible for at least
one step, and the resulting state will satisfy some D ∈ D (and I), at an index
one less than that by which the original state satisfied C.

It is easy to extend this definition to augmented decoders; and the notions
of safe and covers also need to be relativized to the global invariant (see
Section 2.6).
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The decoder can be expected to enforce the global invariant by means of the
local safety conditions, for instance allowing that a memory write is safe only if
it doesn’t alter the program’s code. It may be useful to allow the extension to
add facts to the global invariant, as long as those facts are automatically pre-
served (i.e. without needing the decoder to enforce them); this is discussed in
Section 3.1.5. In earlier work [36], Necula and I explored the possibility of using
extension-specific global invariants, where each extension actually provides its
own decoder and proves it correct with respect to its own global invariant. In
this thesis I instead propose that the extension directly does the work of show-
ing that its specific invariants are preserved, by incorporating them into each
local invariant. The decoder-enforced global-invariant framework given here is
then only used for invariants, namely preservation of the program’s code block,
which are intended to be used by all extensions.

2.6 The Soundness Theorem

Now I will present the logical formalism implemented by the Open Verifier
in its complete form. A Coq implementation of the results of this section is
available.

We must begin with a logical correspondent to the notion of safe execution
of a program. So let us assume the existence of a type

state : Set

of machine states, as well as a relation

 : state → state → Prop

describing safe machine transitions. These parameters are intended to encode
the machine semantics as well as the safety policy; in particular,  is that
subset of all machine transitions which are to be considered safe. See Section 3.2
for a discussion of what kinds of safety policies can be encoded in this way.

Definition 2.6.1. A state ρ is capable of i steps of safe progress, written
progi ρ, when any chain of  -transitions starting at ρ can be extended to at
least i steps long. That is,

prog0 ρ always holds;

progi+1 ρ ⇐⇒ (∃ρ′. ρ ρ′) ∧ (∀ρ′. ρ ρ′ =⇒ progi ρ
′).
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By prog ρ is meant ∀i. progi ρ.

I observe here again that  only needs to model the safe transitions to
be made under the control of the program to be verified; for example it need
not reflect actual machine behavior after control is returned to the operating
system, simply whether returning control to the operating system is to be
considered safe in any given instance.

The extension will work with a type of verification states, corresponding
typically to facts known to hold at some particular point during program exe-
cution. I call these local invariants and assume the existence of some type

locinv : Type.

I will not specify the type locinv, but assume that there is a satisfaction
relation by which any locinv can be regarded as a state predicate indexed by
a natural number and a state predicate (the global invariant):

|=: nat → (state → Prop) → state → locinv → Prop.

For a state ρ, an index i, a global invariant I, and a locinv C, I write ρ |=I
i C

for the statement that this relation holds, where ρ |=I
i C is read “ρ satisfies C

at index i with global invariant I”.
The global invariant is a predicate of states which is intended to hold at

all points during the execution of the program. In the implementation we
will use a global invariant stating that the code block is stored in memory at
a particular location, and has not been modified. The following assumption
about |= is necessary for the global invariant to live up to its name:

Assumption 2.6.2. The relation |= is correct with the invariant in the sense
that for every state ρ, index i and locinv C, and for every state predicate I,

(ρ |=I
i C) =⇒ (I ρ).

Although not necessary for the results of this section, I will state here the
assumption that the satisfaction relation is monotonic in the index:

Assumption 2.6.3. The relation |= is monotonic, i.e. for every state ρ and
locinv C,

∀i. ρ |=I
i+1 C =⇒ ρ |=I

i C.



32

This is necessary in order that we are able to use the type of locinvs defined
in Section 2.7, as discussed in Section 2.7.4.

It is only the satisfaction relation which matters about locinvs for the the-
orem I am establishing. The reason for using an abstract type locinv, instead
of using natural-number indexed state predicates directly, is to emphasize that
the soundness theorem will still hold if we restrict the predicates which can be
expressed, as is actually done in the implementation (see Section 2.7).

Definition 2.6.4. A locinv C is safe for i steps with invariant I, written
safeIi C, when

∀ρ. (ρ |=I
i C) =⇒ progi ρ.

By safeI C is meant ∀i. safeIi C.

Safety of a program is proven by establishing that ∀i. progi ρ0 for every
possible initial state ρ0. I shall not introduce any formal type corresponding
to the notion of a “program” to be verified. Instead, I will assume that any
program determines some logical description of all possible initial states; in
fact I will assume that it determines a global invariant I and an initial locinv
C0, such that ∀i. ρ0 |=I

i C0 holds of every possible initial state ρ0. (In the
implementation, it will be the responsibility of the trusted framework to set up
C0 and I such that this holds.) Thus, safety of the program with initial locinv
C0 can be established by proving ∀i. safeIi C0.

Definition 2.6.5. A list E of locinvs is said to cover a list D of locinvs with
respect to global invariant I, written E coversI D, when

∀i.
(

∧

E∈E

safeIi E
)

=⇒
(

∧

D∈D

safeIi D
)

.

We will require the extension to provide extra information about its locinvs;
in particular, a proof that the locinv specifies a particular value for the program
counter. This uses the following notion.

Definition 2.6.6. For τ : locinv → Type, a τ -augmented locinv is a pair
(C, t) where C : locinv, and t : τ C.

Any augmented locinv can be treated as a locinv by ignoring the augmenta-
tion. In the following I will do this without comment, applying the predicates
|=, safe, and covers to augmented locinvs and lists of augmented locinvs.
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The decoder is that part of the trusted framework which specifies the tran-
sition relation  , in terms of locinvs.

Definition 2.6.7. For τ as before, a τ -augmented decoder is a function which
takes a τ -augmented locinv and returns a pair, consisting of a state predicate
(the local safety condition) and a list of locinvs (the possible next states); thus
a decoder is of type

(ΣC : locinv.(τ C)) →
(

(state → Prop) × locinv list
)

Definition 2.6.8. A τ -augmented decoder decode satisfies the decoder cor-
rectness property with invariant I iff, for any τ -augmented locinv (C, t), where
(P,D) = decode(C, t),

∀i.∀ρ.(ρ |=I
i+1 C) ∧ (P ρ) =⇒

(∃ρ′.ρ ρ′) ∧
(

∀ρ′.ρ ρ′ =⇒ prog ρ′ ∨
(

∨

D∈D

ρ′ |=I
i D

)

)

.

That is, for any state ρ satisfying the input locinv C (and the global invariant
I), if the local safety condition P holds, then progress is possible for at least one
step, and the resulting state is either safe (can make indefinite safe progress),
or will satisfy some D ∈ D (and I), at an index one less than that by which
the original state satisfied C.

Observe that we will allow the decoder to omit safe continuations from
its output D, insofar as D can exclude ρ′ for which prog ρ′. The remaining
continuations will be those the safety of which requires a proof obligation for
the untrusted extension. This can be used by the implementation to eliminate
cases which are known to the trusted framework to result in a safe abort, see
Section 4.3.4.2.

The following is the key property to be established by the untrusted exten-
sion.

Definition 2.6.9. A set E of τ -augmented locinvs is closed under scanning with
respect to τ -augmented decoder decode and global invariant I, if the following
two conditions hold for each E ∈ E . Let (P,D) = decodeE. Then

1. ∀i.∀ρ.(ρ |=I
i E) =⇒ (P ρ);
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2. E coversI D.

Lemma 2.6.10. Let I : state → Prop, and decode be a τ -augmented decoder
which satisfies the decoder correctness property with invariant I. If a set E of
τ -augmented locinvs is closed under scanning with respect to decode and I,
then for each E ∈ E , we have that ∀i. safeIi E.

Proof. The proof proceeds by induction on the index i. The base case i =
0 holds trivially. So suppose as induction hypothesis that for each E ∈ E ,
safeIi E. We will establish that for each E ∈ E , safeIi+1E, which will complete
the proof by induction.

Fix some E ∈ E . To show safeIi+1E, by definition we must show that for
every ρ such that ρ |=I

i+1 E, progi+1 ρ. Fix some ρ such that ρ |=I
i+1 E.

Let (P,D) = decodeE. By the decoder correctness property, instantiated
at our chosen ρ and i,

(ρ |=I
i+1 E) ∧ (P ρ) =⇒

(∃ρ′.ρ ρ′) ∧
(

∀ρ′.ρ ρ′ =⇒ prog ρ′ ∨
(

∨

D∈D

.ρ′ |=I
i D

)

)

.

By condition (1) of closure under scanning, we have that (P ρ). Therefore it is
possible to make one step of progress from ρ; and any resulting state ρ′ either
satisfies prog ρ′, or else will satisfy some D ∈ D (and the global invariant I).

Suppose the second case. We now use condition (2) of closure under scan-
ning, which has that E coversI D. By the induction hypothesis, safeIi E for
each E ∈ E . Thus by the definition of covers, safeIi D for each D ∈ D. By
the definition of safeI we can conclude that progi ρ

′ for any ρ′ satisfying some
D ∈ D at index i and invariant I.

Now for each ρ′ resulting from our chosen ρ after one step of execution,
either we have prog ρ′ directly from the decoder correctness property, or else the
above condition holds; either way we have progi ρ

′. Thus we have established
progi+1 ρ, completing the proof.

Theorem 2.6.11 (Soundness of the Open Verifier). Let I : state →
Prop, and decode be a τ -augmented decoder which satisfies the decoder cor-
rectness property with invariant I. Suppose a set E of τ -augmented locinvs is
closed under scanning with respect to decode and I.
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Suppose also that E coversI{C0}, where C0 is an initial locinv for a program
in the sense that for any possible initial state ρ0, ρ0 |=I

i C0 for all i. Then the
program is safe in the sense that each such ρ0 can make indefinite safe progress.

Proof. By the lemma ∀i. safeIi E for each E ∈ E . Thus by the definition
of coversI , ∀i. safeIi C0. The rest follows by the definitions of safety and
progress.

In the following Section 2.7 I will instatiate the type locinv and its satis-
faction relation |=. Once that is done, the role of the untrusted extension can
be understood as producing a list of locinvs, which covers an initial locinv for
the program to be satisfied, and proving that it is closed under scanning with
respect to some correct decoder.

2.7 The Type Locinv

Recall that for the purposes of soundness, the use of locinvs is just that they in-
duce a state predicate indexed by natural numbers and by the global invariant,
via the relation

|=: nat → (state → Prop) → state → locinv → Prop,

with the only requirement being that the global invariant in fact holds, i.e.

(ρ |=I
i C) =⇒ (I ρ).

To use the soundness theorem, nothing prevents us from simply using indexed
state predicates. For various implementation reasons, however, we have found it
useful to restrict the expressiveness of locinvs. This is explored in the following.

2.7.1 Existential Variables, Registers, and Assumptions

The first optimization is to note that we can remove the need to reason explicitly
about predicates of states, by requiring locinvs to have the form (omitting for
now the indexing):

λρ. ∃x : τ.
(

ρ = f(x )
)

∧ (A x ).

Using this scheme, when the extension has to prove a local safety condition

∀ρ.(ρ |= C) =⇒ (P ρ),
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it suffices to prove
∀x : τ. (A x ) =⇒

(

P (f x )
)

.

On actual systems machine states (type state) will generally consist of a
register file and a memory; state can be imagined as a type of tuples, with
many components (the registers) of type val and one (the memory) of type
mem. Often the memory can be treated analogously with the registers and so I
often use the term “registers” to refer to all of the components of state. The
function f in the locinv above can then be said to specify the “registers”.

The type τ is often referred to in the plural as the “existential variables” of
the locinv; τ is generally a large tuple, with various components for particular
values we wish to existentially quantify, which can in fact be thought of as
many individual variables. The predicate A is referred to in the plural as the
“assumptions” of the locinv.

For the implementation we have the decoder output a local safety condition
which is already a function of τ , using the registers f specified by the input
locinv to translate (P ρ) directly into (P (f x )).

2.7.2 Progress Continuations

The other refinement I propose has to do with the notion of indexing. The
original motivation for indexing is for the handling of function calls and returns;
the locinv for the start of a function makes the claim that it is safe to jump to
the return address, which is implemented as a locinv C such that

ρ |=i C ⇐⇒ (pc ρ) = F ∧ ∀j ≤ i. safej(Ret ρ)

where for any ρ, (Ret ρ) is a locinv such that

ρ′ |=i (Ret ρ) ⇐⇒ (pc ρ′) = (ra ρ).

The extension can use C to cover a decoder continuation, only if the extension
can establish that the return address has been correctly set up to somewhere
that we know is safe to jump to.

In actual fact, during the execution of any program which we can verify, in
which C is the locinv for line F , any ρ that comes to line F will satisfy the
stronger, unindexed property that

(pc ρ) = F ∧ safe∞(Ret ρ).
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Of course, this matches precisely the suggested intuition of the requirement for
a function call. As discussed in Section 2.3, it is only that it turns out to be
difficult to establish all the required facts using unindexed claims. To make the
proof go through, we need to generalize the locinvs which contain safety claims
about other locinvs, such that they contain indexed safety claims instead.

Thus the indexing is a purely technical device; and having the indices every-
where is distracting as well. So I will now propose a refinement of the system
such that the extensions never have to reason about indices. Essentially, locinvs
are restricted so that the only allowable use of indexing is in safety claims about
other locinvs.

Note that this does restrict the use of the system. Appel and McAllester
in [6] create a type system using a similar notion of indexing, in which the
indexing is used to define recursive types, by expressing at index i that a state
can make i steps of progress, at each step satisfying some predicate. The refined
version of locinv cannot express this kind of indexed predicate. We have found
a more fruitful approach to recursive types is to break the recursion by means
of intensional typing (see Section 4.2.1.1).

2.7.3 Locinvs, Again

I can now define a type of locinvs using the above ideas.

Definition 2.7.1. A locinv C is inductively defined as the type of tuples

(C.type, C.regs, C.assume, C.progress),

where

C.type : Set;

C.regs : C.type → state;

C.assume : C.type → Prop;

C.progress : (C.type → locinv) list.

The notions of satisfaction and safety are defined recursively on the structure
of locinvs, as follows. Let I : state → Prop. A state ρ satisfies a locinv C at
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index i with global invariant I, written ρ |=I
i C, when

(I ρ) ∧ ∃x : C.type. ρ = (C.regs x ) ∧

(C.assume x ) ∧
∧

P∈C.progress

∀j ≤ i. safeIj(P x );

a locinv C is safe for i steps with invariant I, written safeIi C, when

∀ρ.(ρ |=I
i C) =⇒ progi ρ.

By safeI C is meant ∀i. safeIi C.3

Observe that it is logically important that locinvs be an inductive type, and
that the definition of |= be recursive over that inductive structure. Otherwise
there would be a circularity in the definition. Since we only allow well-founded
locinvs, it can be imagined that |= is first defined (non-recursively) for locinvs
without a progress field; and then for locinvs whose progress locinvs come
from that class; and so on.

In the implementation we have found it efficient to store the assume field as a
list of predicates, which are joined by conjunction to create a single predicate.
Because of this I will refer to C.assume in the plural as the assumptions of
C. Similarly, C.type is implemented as a tuple type, and so I refer to it as
the existential variables of C. As mentioned above, the notion of state is
implemented as a tuple of individual registers, motivating the name of the field
C.regs as the registers of C.4

The elements of C.progress are called C’s progress continuations. They
embody claims that safe progress can be made by continuing execution in
a state satisfying certain conditions. The example to keep in mind is the
continuation, stating that it is safe to continue if the pc is set to the value of
the return address register at the start of execution of the function.

3Technically, the notion of safety used in the soundness theorem is defined after the
satisfaction relation |=; but of course that definition will coincide with the notion of safety
defined concurrently with |= here.

4In our prototype implementation, the program counter is stored separately from the
other registers, giving a fifth component to the type of locinvs. This is mostly due to the
fact that the value of the program counter is the augmentation sent to the decoder, to enable
the decoder to find the instruction to be executed. The separation is not necessary for the
formal development, but see Section 3.1.7 for related implementation issues.
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Observe that the only dependence on the index i occurs in the claims that
the progress continuations are safe for i steps.

We will need the following:

Lemma 2.7.2. |= is monotonic, i.e. for any I, i, ρ, and C,

ρ |=I
i+1 C =⇒ ρ |=I

i C.

Proof. Using that the only dependence on the index in the definition of |= is
with the progress continuation, this follows from the fact that

∧

P∈C.progress

∀j ≤ i+ 1. safeIj(P x ) =⇒
∧

P∈C.progress

∀j ≤ i. safeIj(P x ).

Finally, two notes on notation. First, it is often convenient to use a mapping
notation with the progress continuations. Thus given a locinv D, and x :
D.type, I will write

(D.progress x )

for
{(R x ) |R ∈ D.progress}.

Second, in examples it is often more convenient to write locinvs as state
predicates, rather than specifying the four fields directly. I will suppress the
global invariant and indexing and write, for instance,

λρ. ∃τ. (A τ ρ) ∧ safe(R τ ρ).

This should be understood as specifying a locinv C where

C.type = τ × state;

C.regs = λ(t , ρ). ρ;

C.assume = λ(t , ρ). (A t ρ);

C.progress = {λ(t , ρ). (R τ ρ)}.

Note that the regs field is always boring under than translation. In order to
improve the efficiency of automated theorem proving, we have found it better
to have equalities among registers reflected directly in the regs field rather
than in the assume field.
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2.7.3.1 A Final Restriction

For completeness I note here one more restriction on the type of locinvs, used
in the implementation. Logically it is used in this thesis only in Lemma 2.7.11,
though the lemma can be weakened only slightly to avoid it. As defined above,
the progress continuations of a locinv can depend on the host locinv’s existential
variables in any conceivable way; but in practice the only use of this is to
include the host’s existential variables among the progress continuation’s, as I
now define.

Definition 2.7.3. For τ : Set let a τ -dependent locinv, type (locinv’ τ), be
the type of tuples

(C.type’, C.regs, C.assume, C.progress),

where

C.type’ : Set;

C.regs : τ × C.type’ → state;

C.assume : τ × C.type’ → Prop;

C.progress : (locinv’ (τ × C.type’)) list.

The type locinv of top-level locinvs can be identified with locinv’ unit. For
R : locinv’ (τ × τ ′) and x : tau, let (R x) : locinv’ τ ′ be defined recursively
as

(R x).type’ = R.type’;

(R x).regs = λ(y, z). (R.regs (x, y, z));

(R x).assume = λ(y, z). (R.assume (x, y, z));

(R x).progress = {(S x) | S ∈ R.progress}

In particular, any progress continuation of a locinv C can be considered as a
function C.type → locinv, as before.

Using that last fact, we can pretend that locinvs are as defined in Defini-
tion 2.7.1, only that the progress continuations are restricted so that they de-
pend on the existential variables in a particularly simple way. In Lemma 2.7.11
I will make use of the fact that there is a sensible notion of R.progress for for
each R ∈ D.progress, not just (R x ).progress for some x : D.type.
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Finally note that given f : τ → τ ′, any C : locinv’ τ ′ can be lifted to
a locinv’ τ . I will write this as λx. (C (f x)), defining D = λx. (C (f x))
recursively by

D.type’ = C.type’;

D.regs = λ(x, y). (C.regs (f x, y));

D.assume = λ(x, y). (C.assume (f x, y));

D.progress = {λ(x, y).(S (f x, y)) | S ∈ R.progress}.

2.7.4 The Decoder

There is a bit of a surprise related to the decoder. One might imagine that
the decoder should be not only correct but complete, in that for instance the
output continuations D should describe exactly those states which can result
from executing one step on some state described by the input locinv.

Recall the definition of decoder correctness (here omitting the global invari-
ant):

Definition 2.7.4. A decoder decode satisfies the decoder correctness property
iff, for each locinv C, where (P,D) = decodeC,

∀i.∀ρ.(ρ |=i+1 C) ∧ (P ρ) =⇒

(∃ρ′.ρ ρ′) ∧
(

∀ρ′.ρ ρ′ =⇒
∨

D∈D

ρ′ |=i D
)

.

That is, for any state ρ satisfying the input locinv C, if the local safety condition
P holds, then progress is possible for at least one step, and the resulting state
will satisfy some D ∈ D, at an index one less than that by which the original
state satisfied C.

But if the input locinv states that, at index i+1, some locinv R is safei+1,
then a complete decoder would, in its output continuations, need to say at
index i that R is safei+1. This is impossible according to the definition of
locinv I have now given.

The decoder we will use (defined in Section 3.3) satisfies the following
stronger property.
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Definition 2.7.5. A decoder decode satisfies the strong decoder correctness
property iff, for each locinv C, where (P,D) = decodeC,

∀i.∀ρ.(ρ |=i+1 C) ∧ (P ρ) =⇒

(∃ρ′.ρ ρ′) ∧
(

∀ρ′.ρ ρ′ =⇒
∨

D∈D

ρ′ |=i+1 D
)

.

That is, for any state ρ satisfying the input locinv C, if the local safety condition
P holds, then progress is possible for at least one step, and the resulting state
will satisfy some D ∈ D, at the same index by which the original state satisfied
C.

The strong correctness property implies the original correctness property,
by the monotonicity of |=. Thus, we can work with our strong decoder and still
rely on the soundness theorem (Theorem 2.6.11). This is the only technical
reason for requiring that |= be monotonic.

This “slackness”, where the decoder satisfies a property stronger than that
required by the soundness theorem, is an indication that I have given up some
expressive power by this restriction on locinvs. I will show in Chapter 4 that
locinvs are nonetheless powerful enough to express the predicates needed for
serious verification projects. I propose that the loss of expressive power will be
worth it for the simplicity, gained by not having to reason about indexing, to
the writers of extensions.

2.7.5 Coverage Proof Rules

To actually remove the need for reasoning about indices requires providing
means for the extension to establish the coverage proof obligations, such that
the proofs do not involve indexing. Recall the definition

Definition 2.7.6. A list E of locinvs is said to cover a list D of locinvs with
respect to global invariant I, written E coversI D, when

∀i.
(

∧

E∈E

safeIi E
)

=⇒
(

∧

D∈D

safeIi D
)

.

Note the easy lemma

Lemma 2.7.7. Let I : state → Prop. Let E and D sets of locinvs. Then
E coversI D if and only if for each D in D, E coversI{D}.
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Proof. Immediate.

By means of this lemma, we can restrict our attention to the notion of
covering a single locinv D.

Another useful easy lemma is

Lemma 2.7.8. Let D, E , and E ′ be sets of locinvs such that E ⊆ E ′. Then

E coversI D =⇒ E ′ coversI D.

Thus, having established a proof of coverage with one set E of locinvs, coverage
will also hold with any larger set E ′.

Proof. Immediate.

I now re-express coverage using the refined notion of locinv.

Lemma 2.7.9. Let I : state → Prop. Let D be a locinv and E a set of locinvs.
Then E coversI{D} if

∀x : D.type . (D.assume x ) ∧ (I (D.regs x )) =⇒
∨

E∈(E∪(D.progress x))

∃y : E.type . (D.regs x ) = (E.regs y) ∧

(E.assume y) ∧ (E ∪ (D.progress x ) coversI(E.progress y)).

That is, the coverage claim is implied by the following: Suppose we have an
instantiation of D’s variables such that D’s assumptions hold, and the global
invariant I holds at the state specified by D’s registers. Then we can choose
an E, either from E or from D’s progress continuations, and an instantiation
of E’s variables, such that the states described by D and E coincide, and E’s
assumptions hold, and E’s progress continuations are safe under the assumption
that D’s progress continuations are safe.

Proof. Choose an index i and suppose
∧

E∈E
safeIi E. I will show safeIi D. So

choose ρ such that ρ |=I
i D. I will show progi ρ.

By the definition of |=, we have that

(I ρ) ∧ ∃x : D.type. ρ = (D.regs x ) ∧

(D.assume x ) ∧
∧

P∈D.progress safe
I
i (P x ).
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Fix a x witnessing the existential; then we can deduce from the hypothesis
that

∨

E∈(E∪(D.progress x ))

∃y : E.type . (D.regs x ) = (E.regs y) ∧

(E.assume y) ∧ (E ∪ (D.progress x ) coversI(E.progress y)).

Choose E and y for which this is so. Since we have assumed that
∧

E∈E
safeIi E

and we have also that
∧

P∈D.progress safe
I
i (P x ), then we can derive that

safeIi E, and also that
∧

R∈E.progress safe
I
i (R y).

But this gives us

(I ρ) ∧ ∃y : E.type. ρ = (E.regs y) ∧

(E.assume y) ∧
∧

R∈E.progress safe
I
i (R y),

in other words that ρ |=I
i E. Together with safeIi E, this yields progi ρ, which

completes the proof.

Observe that to prove a coverage obligation by means of this lemma, one will
typically be required to prove other coverages, of each progress continuation
R of the covering locinv E. However, these coverage proofs (1) happen in a
context in which D’s assumptions hold, and (2) have D’s progress continuations
additionally available as candidates for the covering. We can take advantage
of the fact that a locinv is a higher-order entity so that all coverage subproofs
happen without additional context and with the same covering set; intuitively
all coverage proofs will happen at “top level”. This offers significant advantages
in efficiency and simplicity for the implementation.

The rough idea is to expand R so that it contains D’s assumptions and
progress continuations. I will now make this precise.

Definition 2.7.10. The function

Acc : (D : locinv)(τE : Set)(f : D.type → τE)(R : τE → locinv)locinv

is defined as follows: AccD f R is the locinv C where

C.type = Σx : D.type. (R (f x)).type

C.regs = λ(x, y). (R (f x)).regs y

C.assume = λ(x, y). (D.assume x) ∧ ((R (f x)).assume y)

C.progress = λ(x, y). (D.progress x) ∪ ((R (f x)).progress y).
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This definition can satisfy the restriction on progress continuations in-
troduced in Section 2.7.3.1, as long as R has the restricted form (i.e. R :
locinv’ τE). In that case we should properly write

C.type = D.type× R.type’

C.regs = λ(x, y). R.regs (f x, y)

C.assume = λ(x, y). (D.assume x) ∧ (R.assume (f x, y))

C.progress = {λ(x, y). (P x) | P ∈ D.progress}∪

{λ(x, y). (P (f x, y)) | P ∈ R.progress}

The locinv AccD f R is formed by “accumulating” the assumptions and
progress continuations of D, into the progress continuation R, lifting it to a
bona fide locinv by the instantiating function f .

In the following the notation AccD f E is used for {AccD f E |E ∈ E}.

Lemma 2.7.11. Let I : state → Prop. Let D be a locinv and E a set of
locinvs. Then E coversI{D} if there is a covering continuation

E ′ ∈ {λ .E |E ∈ E} ∪D.progress

and some instantiating function

f : Πx : D.type.(E ′ x ).type

such that the following two facts hold: for all x : D.type, letting E = (E ′ x ),

(D.assume x ) ∧ (I (D.regs x )) =⇒

(D.regs x ) = (E.regs (f x )) ∧ (E.assume (f x ))

and, letting f ′ x = (x , f x ),

E coversI AccD f ′ (E ′.progress).5

5To write E′.progress I am using the restriction of Section 2.7.3.1. Otherwise I would

need to use AccD f (E.progress); then this coverage subproof would still not quite be at

“top level” in that it would be parametric in x : D.type.
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Proof. I proceed by Lemma 2.7.9, where for any x the choice of E is given by
the hypothesis, and y = (f x ). The only difficult part is to establish that

E coversI AccD f ′ (E ′.progress) =⇒

∀x : D.type. E ∪ (D.progress x ) coversI(E.progress (f x )).

So fix x and let y = (f x ). Suppose, for some index i, that
∧

E∈E
safeIi E

and that
∧

P∈D.progress safe
I
i (P x ). Choose any R in E.progress; note that

R = (R′ x ) for R′ ∈ E ′.progress. We must show that safeIi (R y).
Choose some ρ such that ρ |=I

i (R y); we must show that progi ρ. Let z

be the instantiation of (R y).type which witnesses that ρ |=I
i (R y). Letting

C = AccD f ′ R′, and using that (R (f x)) = (R′ (x, f x)), we have that

C.type = Σx : D.type. (R (f x)).type

C.regs = λ(x, y). (R (f x)).regs y

C.assume = λ(x, y). (D.assume x) ∧ ((R (f x)).assume y)

C.progress = λ(x, y). (D.progress x) ∪ ((R (f x)).progress y).

In particular, for the instantiation t = (x , z ), we have that ρ = C.regs t , and
that C.assume t . To establish that ρ |=I

i C we must just establish the safety of
its progress continuations. But we already have that (D.progress x ) are all
safe; and (R y).progress z are all safe by the fact that ρ |=I

i (R y).
Thus ρ |=I

i C. But, under that assumption that
∧

E∈E
safeIi E, safeIi C by

hypothesis. Thus progi ρ. This completes the proof.

The statement of the following lemma is somewhat technical, but it simply
embodies the claim that if E has a progress continuation R which is essentially
the same as a progress continuation of D, then the coverage of AccD f R is
automatic. Intuitively, this is because D already claims the safety of R, and
the accumulation into R of any extra assumptions from D won’t affect that.

Lemma 2.7.12. Let D be a locinv such that R ∈ D.progress. Suppose that
f : D.type → τ and g : τ → D.type have the property that (g (f x)) = x for
all x.

Then for any I

{} coversI
{

AccD f
(

λz.(R (g z))
)}

.
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Proof. It is possible to prove this using Lemma 2.7.11 by induction on the
structure of locinvs, but easier to proceed by returning to the original definition
of covers; so let C =

{

AccD f
(

λz.(R(g z))
)}

. We must prove safeIi C.
So pick some ρ such that ρ |=I

i C. By the definition of |= there is
some x : C.type witnessing this; let x = (w, y) where w : D.type, y :
(R (g (f w))).type = (R w).type.

By inspection of the definition of |= and Acc, observe that ρ |=I
i C implies

safeIi (E w) for any E ∈ D.progress; and so safeIi (R w). But by the definition
of Acc, it is clear that ρ |=I

i C (with x = (w, y) witnessing the existential)
implies ρ |=I

i (R w) (with y witnessing the existential). Thus we have progi ρ,
completing the proof of safeIi C.

Observe that proving coverage by Lemma 2.7.11 requires choosing a single
particular covering continuation. The statement of Lemma 2.7.9 is more gen-
eral, in that the continuation which covers D is chosen in the context of some
particular instantiantion of D’s existential variables, and under the assump-
tions of D and the global invariant; in particular this allows a case analysis,
that different covering continuations be chosen based on which of several dis-
junctive possibilities hold. The following lemma allows us to regain this; first
a notation.

Definition 2.7.13. Let C be a locinv and A : C.type → Prop. Then the
notation C ∧ A refers to the locinv where A is added to the assumptions, that
is:

(C ∧ A).type = C.type

(C ∧ A).regs = C.regs

(C ∧ A).assume = λx . (C.assume x ) ∧ (A x )

(C ∧ A).progress = C.progress

Lemma 2.7.14. Let I : state → Prop. Let D be a locinv and E a set of
locinvs; let A,B : D.type → Prop such that

∀x : D.type. (D.assume x ) ∧ (I (D.regs x )) =⇒ ((A x ) ∨ (B x )).

Then E coversI{D} if E coversI{D ∧ A,D ∧ B}.
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Proof. Suppose that E coversI{D ∧ A,D ∧ B}. To show that E coversI{D},
assume that safeIi E for all E ∈ E . Then safeIi (D ∧ A) and safeIi (D ∧ B),
and it must be shown that safeIi D.

So choose some ρ such that ρ |=I
i D. Then (I ρ), and there is some x :

D.type such that (D.assume x ), and ρ = (D.regs x ). Thus ((A x ) ∨ (B x ))
holds. But in the first case, ρ |=I

i (D ∧ A); in the second case ρ |=I
i (D ∧ B).

Either way progi ρ, completing the proof.

One more means of establishing coverage will be needed:

Lemma 2.7.15. Let I : state → Prop. Let D be a locinv such that

∀x : D.type. (D.assume x ) ∧ (I (D.regs x )) =⇒ False.

Then for any set E of locinvs, E coversI{D}.

Proof. If there were any ρ such that ρ |=I
i D, then False would hold. Thus

there is no such ρ and safeIi D holds vacuously, and thus E coversI{D} holds.

Together, the means of proving covers given in Lemmas 2.7.11, 2.7.14 and
2.7.15 seem sufficient for the needs of extensions; in the implementation these
are the only means of proving coverage that the extension can use. See Fig-
ure 2.1 for an expression of these as proof rules. This constitutes an alternate,
weaker and yet sufficient definition of the notion of covers.

One last refinement of the notion of covers has proved useful. Looking
ahead to the implementation, the extension has the job of producing locinvs
which cover the decoder’s output continuations. The common case is for the
extension to use a locinv very close to that given by the decoder. The ex-
tension will make incremental changes: perhaps to introduce explicitly a new
assumption which follows from the others, perhaps to forget that a register has
a certain specific value and replace it with a new existential variables (which
we call “freshening the register”).

For example, type-based proofs of memory safety typically require that the
memory satisfy a certain invariant, say (memOk M); the actual contents of the
memory are not so important. So the decoder might have an input locinv along
the lines of

λρ. ∃M : mem, A : val, B : val, T : type.((rM ρ) = M) ∧

(memOk M) ∧ (hasType A (ptr T )) ∧ (hasType B T ).



49

For choice of E ′ ∈ {λ .E |E ∈ E} ∪D.progress
and f : Πx : D.type.(E ′ x ).type;
letting E = (E ′ x ) and f ′ x = (x, f x):

[ (D.assume x ), (I (D.regs x )) ]
...

(D.regs x ) = (E.regs (f x )) ∧
(E.assume (f x )) E coversI AccD f ′ (E ′.progress)

E coversI{D}

[ (D.assume x ), (I (D.regs x )) ]
...

(A x ) ∨ (B x ) E coversI{D ∧ A,D ∧ B}
E coversI{D}

[ (D.assume x ), (I (D.regs x )) ]
...

False

E coversI{D}

R ∈ D.progress ∀x.(g (f x)) = x

E coversI{AccD f (λz.(R (g z)))}

E coversI{D} E coversI D
E coversI({D} ∪ D)

E coversI D E ⊆ E ′

E ′ coversI D

Figure 2.1: Proof rules for covers.
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If the next instruction is the (type-safe) memory write of B into address A,
then the decoder’s output continuation might be

λρ. ∃M : mem, A : val, B : val, T : type.((rM ρ) = (updM A B)) ∧

(memOk M) ∧ (hasType A (ptr T )) ∧ (hasType B T ).

But what the extension wants is to forget the contents of memory and establish
that the new memory is still memOk, by means of a lemma such as

∀M : mem, A : val, B : val, T : type.(memOk M) ∧

(hasType A (ptr T )) ∧ (hasType B T ) =⇒

(memOk (updM A B));

so in fact the extension would like to cover the decoder’s locinv with one like

λρ. ∃M ′ : mem, A : val, B : val, T : type.((rM ρ) = M ′) ∧

(memOk M ′) ∧ (hasType A (ptr T )) ∧ (hasType B T ).

It is easy enough to establish this coverage, but going directly by
Lemma 2.7.11 requires proving more than should be necessary: for it requires
proving that all the assumptions of E follow from those of D, while really we
only need to prove the new assumption (memOk M ′), where M ′ = (updM A B)).
This has important efficiency ramifications with regard to the implementation
of the Open Verifier. The following shows one way to avoid inefficiency.

Definition 2.7.16. For a locinv D, let a delta ∆ be a tuple

(∆.type,∆.regs,∆.assume),

where

∆.type : Set;

∆.regs : D.type× ∆.type → state;

∆.assume : D.type× ∆.type → Prop.

Let ∆D be the locinv

∆D.type = D.type× ∆.type

∆D.regs = λ(x, y).(∆.regs (x, y))

∆D.assume = λ(x, y).(∆.assume (x, y)) ∧ (D.assume x)

∆D.progress = {λ(x, y).(E x) |E ∈ D.progress}.
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Such a delta only allows adding assumptions and existential variables; in
practice we also need to be able to drop assumptions and existential variables
on which nothing depends, but this is not difficult and I will not formalize it
here.

Lemma 2.7.17. Let I : state → Prop. Let D be a locinv and ∆ a delta of D.
Suppose that there is a function

g : D.type → ∆.type

such that for any x : D.type, under the assumptions (D.assume x) and
(I (D.regs x)) it is proven that

(∆.regs (x, g x)) = (D.regs x)

and
(∆.assume (x, g x)).

Then
{∆D} coversI{D}.

Proof. I proceed by Lemma 2.7.11, using the instantiation function

f x = (x, g x).

The proof is straightforward. Worth noting is how to establish that for each E
in D.progress, letting E ′ = λ(x, y).(E x), {∆D} coversI{AccD f E ′}; this
follows by Lemma 2.7.12.

2.7.6 First-Order Logic

Above I have introduced a restriction limiting the expressive power available
to the extension, for the benefit of simplicity and clearness. A further such
restriction is possible, as follows. I have made use of higher-order features in
the notion of locinv and the proof of the soundness theorem Theorem 2.6.11.
Most importantly, I have made use of a higher-order predicate safe. But the
current definition of locinv specially encodes certain claims involving safe, via
the progress continuations. It is possible, then, to make this the only use of
higher-order features, by restricting the logic used for the variables, registers,
and assumptions of locinvs to first-order.
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The activity of the extension would then be restricted to (1) producing
proofs of first-order formulae, and (2) producing coverage proofs. The pro-
duction of coverage proofs, in turn, essentially amounts to producing lists of
locinvs, and further first-order proofs. The structure of the coverage proofs can
be seen as a proxy for higher-order logic.

This is a meta-logical consideration, in the sense that it concerns the syn-
tactic representations of logical formulae to be passed around by the modules
of the system, and the design of the proof checker.

The advantage to the trusted framework is that the proof checker can be
simpler. The advantage to the extension is that proof generation can be easier,
e.g. using a resolution theorem prover. In practice we have managed to re-
strict the logic of the assumptions of locinvs to Horn logic, which makes proof
generation especially easy.

Essentially, I have encapsulated all the necessary higher-order reasoning
into the soundness theorem and the soundness of the covers rules. Extensions
need only perform first-order reasoning. Surprisingly, this has sufficed even to
verify programs which manipulate function pointers directly.

I believe that these constraints will also make the job of writing extensions
easier. As described in Chapter 4, most of the work of writing an extension is
recognizing the kinds of first-order facts that should hold at a point in execution,
and proving lemmas relating such facts. Although the machinery of coverage
proofs discussed above may seem somewhat technical, in an implementation
it tends to be intuitive. The common case is the “coverage by delta” where
one simply specifies incremental changes to be made to the state, together
with proofs that no essentially new facts are being asserted. Even the most
complicated cases should seem intuitive upon reflection:

• locinvs for method calls to the foo method of particular classes C, D, and
E, should cover a dynamic dispatch to method foo of an object whose
dynamic type could be any of C, D, or E;

• one locinv for the start of function F , which claims that jumping to the
return address is safe, together with a second locinv for the actual return
site at line n+ 1, should cover the result of a function call at line n.
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2.7.6.1 Types

Inductive types are useful in writing extensions, where the set of program-
level types from the programs to be verified can be naturally expressed as
an inductive datatype. Similarly, typing predicates may be defined inductively.
Based on our experience with a prototype implementation of the Open Verifier,
it seems possible that such uses of types are a convenience, which could be
replaced by e.g. coding program-level types into natural numbers. This would
allow a much weaker logic and a correspondingly smaller trusted code base.
However, it runs up against another desideratum, the ease of extension writing.
The proper balance here remains unclear, but in this thesis I will assume that
extension writers have access to the full power of inductive types.

Thus, I will consider that the logic to be used by the extension is a typed
first-order logic, where there are certain types provided (such as val for machine
integers and mem for states of memory), and further inductive types can be
created by the extension as needed.
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Chapter 3

The Implementation of the
Open Verifier

In this chapter I discuss the implementation of a verifier based on the logical
formalism developed in the preceding chapter. That formalism is abstracted
over notions of machine state and safe machine transitions, so I begin by de-
scribing a particular logical instantiation of those notions, and discussing how
this relates to intended notions of safety on actual machines. Next I produce an
instantiation of the decoder required by the formalism. Finally in Section 3.4
I describe the algorithm of the Open Verifier. After discussing various issues
related to the implementation, I close the chapter with a discussion of what is
required to trust a verification produced by the Open Verifier.

3.1 A Simple Machine and Safety Policy

In this section I describe a simple, generic machine in order to produce a
specific instantiation of the Open Verifier framework described in Section 2.6.
The programs to be verified are considered to be machine-encoded programs
in SAL, the “Simple Assembly Language”, the instructions of which determine
the state transition relation of the machine. SAL was originally described in
[30] but the version I describe here is more general. In Section 3.1.7 I outline
how to ascend to the verification of programs compiled for actual machines.
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3.1.1 The Machine State

The machine state consists of a certain number of registers and a memory. I
introduce the type val for the values stored in registers and memory locations,
as well as for the memory locations themselves. (In a concrete machine, val
would typically be the type of 32-bit integers.) I will assume the existence of
addition and subtraction operators on val; I will use zero as an object of val
and assume that equality with zero is decidable.

I introduce the type mem for memory states. The type mem comes equipped
with the operators

upd : mem → val → val → mem

sel : mem → val → val

where (updM A V ) is the new memory resulting from a write in memory M

to address A of value V , and (selM A) is the value stored in address A in
memory M . Essentially mem consists of partial mappings from values to values.

For convenience I collect the registers into a type reg. I assume that the
machine has some specified number N of registers; then the elements of reg

are r1, r2, . . . , rN . It is often convenient to treat the memory as a register
(with values of an unusual type); in such circumstances I will refer to it as rM .

An element of type state is determined by N values of type val, one for
each register, plus a value of type mem for the memory; thus

state ∼= (reg → val) × mem.

I will use a register r as a projection function, writing (ri ρ) for the contents
of register i in state ρ; similarly (rM ρ) is the memory of state ρ. I will use the
notation

ρ[ri 7→ vi, rj 7→ vj, . . . ]

to indicate the state obtained by starting with ρ and replacing the values in
registers (or memory) ri, rj, . . . with vi, vj, . . . .

3.1.2 Machine Transitions

The transition relation  is determined by what instruction is to be executed
in a given state. I introduce the type inst of instruction, and a function instat

such that instat ρ is the instruction that will be executed from state ρ.
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I will define instat in terms of a specified program counter register, pc, by
decoding the value in memory at the address stored in pc:

instat ρ = to inst
(

sel (rM ρ) (pc ρ)
)

,

where to inst is the function determining the instruction encoded by a given
value of type val (that is, a machine integer). I include an instruction invalid

to allow for the possibility that a given val may not properly encode an in-
struction.

To describe the type of instructions, I need a type exp of expressions. These
are expressions which encode values relative to the contents of the registers; we
can take

exp = (reg → val) → val,

although in practice the kinds of expressions one can make will be more limited.
I will coerce elements of type exp to functions of type state → val, writing
(e ρ) for the value of expression e in state ρ; for example, we might have an
expression “r1 + r2” which encodes λρ.(r1 ρ) + (r2 ρ). Observe however that
expressions have no way to refer to the memory contents; specific instructions
will have to be used to access the memory, making it easier to describe memory
safety.

In Figure 3.1 I give the instructions as a set of constructors for the
type inst. The semantics of instructions are given by defining a function
n : inst → state → state which gives the next state after the given instruc-
tion is executed on the given state. I will comment here that the name ijump

is mnemonic for “indirect jump”, and bnez for “branch if not equal to zero”.
The (direct) jump and branch instruction are given offsets from the current pc
to determine the jump target; for genericity I am leaving the sizes of instuc-
tions unspecified, and use an assumed ++ operator to determine the location of
the next instruction in order. Observe also that the semantics of the invalid

instruction is given as an infinite loop, but this is not particularly important;
safe programs must never execute invalid instructions.

In our current implementation, SAL uses integer arithmetic rather than
a genuine machine arithmetic. Thus we do not correctly handle arithmetic
overflow. There is nothing about our system which makes this impossible, but
we have not yet done the work to incorporate it.

I can now define the (not necessarily safe) machine transitions:

ρ  ̃ ρ′ ⇐⇒ ρ′ = n (instat ρ) ρ.
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set : reg → exp → inst

n (set r e) ρ = ρ[rPC 7→ (rPC ρ) ++; r 7→ e ρ]

read : reg → exp → inst

n (read r a) ρ = ρ[rPC 7→ (rPC ρ) ++; r 7→
(

sel(rM ρ) (a ρ)
)

]

write : exp → exp → inst

n (write a e) ρ = ρ[ rPC 7→ (rPC ρ) ++;

rM 7→
(

upd(rM ρ) (a ρ) (e ρ)
)

]

jump : val → inst

n (jump i) ρ = ρ[rPC 7→ (rPC ρ) + i]

ijump : exp → inst

n (ijump e) ρ = ρ[rPC 7→ (e ρ)]

bnez : exp → val → inst

n (bnez e i) ρ =

{

ρ[rPC 7→ (rPC ρ) ++] if (e ρ) = 0;

ρ[rPC 7→ (rPC ρ) + i] if (e ρ) 6= 0

invalid : inst

n invalid ρ = ρ

Figure 3.1: SAL instructions
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3.1.3 Memory Safety

Now I will introduce a safety policy. I will use memory-safety, which is our
constant example. I assume the existence of a predicate addr : val → Prop

which holds exactly of valid memory addresses. Typically we assume that there
are particular blocks of memory that are allocated for use by the program. The
exact location of these blocks (and thus the definition of addr) will change for
each execution of the program, so really we will need to use a notion of safety
which is not fixed but is parametric in such execution-specific values. This
is discussed further below; now, for simplicity, I assume some fixed predicate
addr.

The safety policy is then that

• it is only safe to execute instat ρ from ρ when addr(pc ρ);

• it is never safe to execute an invalid instruction;

• an instruction read r a or write a e is safe from a state ρ only when
addr(a ρ).

We can finally define ρ ρ′ to hold whenever both

• ρ  ̃ ρ′, and

• the instruction instat ρ is safe from ρ according to the safety policy
above.

3.1.4 Execution Parameters

Now consider a simple operating system for the SAL machine, which takes a
SAL program and executes it. This involves loading the code (and accompa-
nying data) of the program into memory, and setting up blocks of memory for
the program to use. In principle which blocks are available, and thus which
memory is to be considered addr, might vary from execution to execution of
the program. We would like to verify the program, in such a way that every
such execution is proven safe, rather than verifying a particular execution. I
will call the various values which vary from execution to execution, but are
fixed over the course of any particular execution, execution parameters.

It is worth noting first how the variant information about accessible memory
can be made available to the program itself. Consider the example of Cool
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(Section 4.1) programs running on the MIPS simulator spim. In this setting
the accessible memory of the program, outside of its own data block, consists of
a stack and a heap. The extent of the heap is given to the program in the initial
values of the $gp and $s7 registers, marking the first and last available address
in the heap, respectively. The top of the stack is passed in the $sp register,
and the stack is guaranteed to be “large enough” in some appropriate sense
(see Section 4.3). The location of the code and data is not needed directly, as
the program could refer to code and data by relative offsets from the current
program counter (as indicated in Figure 3.1); in practice, labels are used (see
Section 3.1.6).

I introduce the execution parameters as a component of the type state,
additional to the registers and the memory:

state = (regs → val) × mem× paramsType.

The type paramsType is supposed to contain all of the execution-specific infor-
mation about how the operating system has set up the program for execution.
For definiteness we can consider it to comprise the following eight addresses of
type val:

code start data start heap start stack start

code end data end heap end stack end

I will use the notation (params ρ) to refer to the component of ρ of type
paramsType.

I will take the definition of  ̃ as before, with the observation that all
transitions preserve (params ρ). (Recall that only models transitions during
the execution of a single program; does not and need not accurately describe
the return of control to the operating system or another program.)

I can now define a notion of safety relative to the execution parameters.

Definition 3.1.1. For ψ : paramsType, let

codeaddrψ A ⇐⇒ code startψ ≤ A ≤ code endψ;

and let

addrψ A ⇐⇒ ¬(codeaddrψ A) ∧

(data startψ ≤ A ≤ data endψ ∨

heap startψ ≤ A ≤ heap endψ ∨

stack startψ ≤ A ≤ stack endψ).
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This division will be useful for the definition of a decoder with respect to a
global invariant that the code of the program is preserved, see Section 3.3.

The safety policy is then that

• it is only safe to execute instat ρ from ρ when addr(params ρ)(pc ρ) or
codeaddr(params ρ)(pc ρ); and

• it is never safe to execute an invalid instruction;

• an instruction read r a or write a e is safe from a state ρ only when
addr(params ρ)(a ρ) or codeaddr(params ρ)(a ρ).

We can finally define ρ ρ′ to hold whenever both

• ρ  ̃ ρ′, and

• the instruction instat ρ is safe from ρ according to the safety policy
above.

Really, the execution parameters are only needed for the formalism. For
any single particular verification, the execution parameters can be considered
as fixed logical constants, and predicates like addr can be considered fixed
particular predicates.

In our prototype implementation, the dependence of predicates like addr

on execution parameters of the state is suppressed, so the initial locinv will
contain apparently global assertions like (addr data start), and the decoder
will output local safety conditions of the form (addrA). Intuitively, then,
addr is treated like some specific predicate, which, in the course of any single
execution, it is.

To connect to the formalism, in order for the locinvs to contain assumptions
about params ρ, we can enforce that every locinv’s existential variables contain
an extra parameter p of type paramsType, and the locinv’s register state asserts
that (params ρ) = p, and every occurence of predicates like addr is relativized
to p. Again, in the implementation we have left all of this implicit.

3.1.5 Execution Parameters and Extension Lemmas

Since params ρ is preserved by  , any facts that hold of the initial state of
execution will hold at any state. In particular, any facts, dependent only on the
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parameters, that the extension can prove from the assumptions of the initial
locinv, can be considered to be part of the assumptions of any locinv. With
respect to the formalism, there are two ways to go about this. One way is to
have the extension explicitly carry any such facts in each locinv it produces;
they will automatically be preserved by the decoder. This can be refined by
having the extension define some predicate which encodes all the necessary
information about the initial state, prove various lemmas about that predicate,
and then carry just that one predicate in each locinv. This is done by the Cool
extension (Section 4.2) using the hierarchyOk predicate.

It is possible, however, to use the mechanism of the global invariant to al-
low the extension to use execution-specific definitions and lemmas. Suppose
the extension introduces certain facts which depend only on the execution pa-
rameters:

Lemmas : paramsType → Prop.

Suppose that the extension is able to prove, given the initial locinv C0, that

∀i.∀ρ0.(ρ0 |=
Iorig
i C0) =⇒ (Lemmas (params ρ0)).

Then we could perform the verification using the global invariant

(I ρ) ⇐⇒ (Iorig ρ) ∧ (Lemmas (params ρ)).

This will work soundly, but there are certain complications involved in
establishing it. In order to apply the soundness theorem (Theorem 2.6.11) it
is necessary that the decoder be correct with respect to the new invariant, and
that the initial locinv still hold with respect to the new invariant. In fact, if
ρ |=I∧J

i C were equivalent to (ρ |=I
i C) ∧ (J ρ), these facts would follow from

the fact that the new part of the invariant holds in the initial state, and that it
is automatically preserved by  (since the params component of the state is).

Unfortunately, the invariant is also used in the safety claims given by C’s
progress continuations, so this is not quite so easy. A closer analysis is needed
of how progress continuations are used by the decoder and in the initial locinv
is needed. I will return to this in Section 3.3 and Section 3.4.4.

3.1.6 Labels

Although the SAL instructions described in Figure 3.1 use direct jumps and
branches to offsets from the current program counter, it is usually more con-
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jump : labelType → inst

n (jump L) ρ = ρ[rPC 7→ &L]

bnez : exp → labelType → inst

n (bnez e L) ρ =

{

ρ[rPC 7→ (rPC ρ) ++] if (e ρ) = 0;

ρ[rPC 7→ &L] if (e ρ) 6= 0

Figure 3.2: SAL instruction, modified to use labels for direct jumps.

venient (particularly when hand-coding assembly) to use labels. This can be
done using the framework of execution parameters, as follows.

Assume a type labelType of labels (this is typically some type of strings).
In the assembly program, certain lines of code are given certain labels. Then
for any particular execution of the program there is an “address-of” operator
& which maps labels to particular values of the program counter. In particular
we can re-express the direct jump and branch instructions to use labels; see
Figure 3.2. Formally the execution parameters (type paramsType) have to be
extended to incorporate the labels, so that & is a function of params ρ. In the
figure this is suppressed, so &(params ρ)L is written simply &L.

We also assume that expressions (type exp) can refer to the & operator,
which is useful for setting the return address before a function call.

In a real system, of course, all references to the labels are replaced with
offsets, so this mechanism is simply a convenience for the extension writer.
Currently the implementation does verify assembly code rather than machine
code, which means that the assembler would have to be considered a trusted
component.

3.1.7 Verification on Actual Machines

To verify programs compiled on an actual machine, it would be possible to
implement the notion of state and  for the language of that machine, and
design a decoder for that language; but for our prototype implementation, we
instead translate such programs into SAL and verify the SAL translations.
This is an assembly-to-assembly translation. I will not discuss the details of
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translation here; SAL is simple and generic enough that it is usually not difficult
to see how the translation works. Some discussion of how to translate MIPS
and x86 code into a slightly different version of SAL can be found in [30].1

To actually believe in the safety of the original program given a verification
of the SAL translation, we have to trust the translator. This means to trust
that it is “safety-reflecting” in the sense that if a translation is safe (in the SAL
sense), then the original program is safe (in the original sense). I believe that
the translation process is easy to trust in general, though I leave it for future
work to spell out precisely what is required.

The only point which seems to provide any trouble is the handling of the
program counter. A single MIPS or x86 instruction will in general translate
into several SAL instructions. This makes it difficult to deal with program-
counter arithmetic in the SAL translation. The solution we have used is to
restrict the possible values of the program counter in locinvs to expressions of
the form

code start +SAL n

for natural numbers n, where +SAL is a special operator which is not otherwise
used in the code. The SAL instructions are laid out in order at addresses
code start +SAL 0, code start +SAL 1, . . . . If the extension tries to use a
locinv whose pc is not of this special form, the decoder will fail (or, at best,
produce output which requires a proof of False).

In particular, if a program tries to do any arithmetic on the program
counter, it will translate to a SAL program which will not verify. The only
way to produce a new program counter is by going to the next instruction,
for which the decoder uses +SAL1, or by using the & operator to refer to an
instruction by its label.

This is a conservative approach; it does mean that genuinely safe original
programs may translate into unverifiable SAL programs. I do not think that
many sensible programs (especially those produced by sensible compilers) will
be affected.

Finally observe that to handle indirect jumps, the decoder may produce
locinvs with pc not of the special form; but the extension will have to provide

1It may be worth noting that the SAL register set can be larger than that of the actual
machine. For instance, to handle x86 condition flags the SAL translation treats those flags as
registers; each arithmetic operation translates into several SAL instructions, one to perform
the arithmetic and the others to set the flags.
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a coverage proof from locinvs with valid pc (by using progress continuations,
for instance). Example are in Section 4.2.2.2 and Section 4.4.1.

3.2 Safety Policies

In this section I will make a short digression on safety policies. First I give some
examples of slightly more complicated safety policies (which are still centered
on memory safety) that could still be easily handled by our implementation.
Then I discuss more generally what sorts of safety policies could be handled in
the formalism.

3.2.1 More about the SAL Safety Policy

Above in Section 3.1.3 I have given a straightforward safety policy for a hypo-
thetical machine using the language SAL. In Section 3.1.4, this safety policy is
modified to allow for a simple operating system which might set up different
memory configurations for different executions of the program.

A useful addition is to allow the operating system to provide routines which
the program can call. It needs to be incorporated into the safety policy that
calling the operating system routines is considered to be safe, without having to
verify the code for the routines. In terms of the formalism, the transition rela-
tion can be augmented with special transitions for calls to trusted functions;
functions which do not return (such as safe aborts and exits) can be modelled
as automatically safe infinite loops. In terms of the verification effort, trusted
functions can be modelled by progress continuations which are claimed to be
safe in the initial locinv for the program. In particular, when calling a trusted
function is only to be considered safe under certain conditions, this can be made
part of the locinv for the trusted function, as a precondition (see Section 4.4).

One interesting example is allocation. Above, I have modelled an operating
system which supplies a certain amount of accessible memory to the program
at the beginning of execution, but provides no way to obtain more memory.
Instead we might like to use an operating system which allows calls to a routine
which may provide a new block of accessible memory. In such a scenario, addr
can no longer considered to be static over the execution of the program, but
must be explicitly made dependent on the state. A new component of the
state corresponding to the state of the operating system allocator can be set
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aside, much like a new register. The progress continuation for the allocator
can specify that the new allocation state will maintain the accessibility of all
addresses which were addr before the allocator was called.

3.2.2 Generalizing the Safety Policy

In the formal development, I have specified the safety policy via a transition
relation  on machine states. A program is considered to be safe if every
possible initial state of the program can make indefinite progress according to
 . Generally,  is some subset of all the transitions which the machine can
make; some of the transitions are considered unsafe, and is restricted so that
unsafe transitions are forbidden.2 For example, to handle memory-safety,  
only allows transitions involving a memory access when the memory concerned
is part of some region considered accessible.

Although in this thesis I only consider the application of the Open Ver-
ifier to memory safety, here I briefly consider the question of what kinds of
safety policies could be implemented by this formal framework. The following
definitions are adapted from [38]. A security policy is a predicate on sets of
executions. A program is said to satisfy a security policy (is safe) if the set
of all possible executions of the program satisfies the predicate. A security
property is a security policy that can be specified by a predicate on individual
executions, where a program is safe if each execution individually satisfies the
predicate. Finally a safety property is a security property which holds of an ex-
ecution, only if it holds for every finite prefix of an execution. Safety properties
correspond to the notion of preventing “bad things” from happening during an
execution; once it happens, the execution cannot later become safe.

The class of security policies which can be handled by the Open Verifier
formalism, defining safety via a  consisting of the safe subset of all machine
transitions  ̃, essentially coincides with the class of safety properties over  ̃-

2If the set of possibly-unsafe machine transitions  ̃ is “functional” or “deterministic”, in
the sense that there is at most one transition from any state, then  is simply that subset
of  ̃ consisting of safe transitions. When, however, a single state has transitions both safe
and unsafe, then all those transitions must be forbidden by  ; since the notion of safety is
“never getting stuck”, we have to ensure that there are no  -transitions at all from a state
which may produce an unsafe transition. In such a scenario it may be more fruitful to think
primarily of safe and unsafe states, rather than safe and unsafe transitions—if any unsafe
transition is possible from a state, it can never be safe to be in that state.
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executions. Any transition relation  determines a safety property, which
holds of an execution when each transition is within  . It is only slightly
harder to translate a safety property into an appropriate transition relation.
We can augment the notion of state to include a history component, a pseudo-
register which contains the execution so far. Then given a safety property S,
we can define ρ ρ′ if and only if

(ρ  ̃ ρ′) ∧ ∀ρ′′.(ρ  ̃ ρ′′) =⇒
(

S (history ρ′′)
)

.

3.3 The Decoder

As established in Theorem 2.6.11, the decoder correctness property is sufficient
for soundness. Observe however that a decoder which always returns

λi.λρ.False, {}

trivially satisfies the correctness property. With such a decoder we have no
hope of proving the safety of a program. We need to design a decoder which
better reflects the actual semantics of  . In fact, the intended use of the
decoder within the OpenVerifier is to replace all reasoning about  , that is,
to encode all facts about machine transitions and the safety policy. We intend
that reference to  need only occur in the proof of decoder correctness, the
proof of special proof rules to be used by the extension to prove the covers

proof obligations, and finally the overall proof of the soundness of the frame-
work (Theorem 2.6.11). The untrusted extension should never have to reason
about  ; this requires that the decoder express its local safety condition and
continuations without reference to  . (This is not a logical requirement but
a meta-logical one about how we would like the decoder output to be repre-
sented.)

I will illustrate the intended decoder by producing a decoder for the lan-
guage of SAL and the  described in Section 3.1.4. The decoder will work
with locinvs with restricted program counters as described in Section 3.1.7.

The decoder will formally be considered specific to the program being veri-
fied, though it should be clear how the implementation can provide this decoder
parametrically for any SAL program. Suppose that the instructions of the pro-
gram are numbered 0, 1, . . . , N ; let the instructions be i0, i1, . . . , iN . Then
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the decoder will be correct with respect to the global invariant

λρ.to inst (sel (rM ρ) (code start + 0)) = i0 ∧

to inst (sel (rM ρ) (code start + 1)) = i1 ∧

· · · ∧

to inst (sel (rM ρ) (code start +N)) = iN .

Call this global invariant I. Assume additionally that code end =
code start +N .

The decoder will work with τ -augmented locinvs where for a locinv C, τ C
is the type

Σn : nat.(0 ≤ n ≤ N) ∧ ∀x : C.type.
(

(pc (C.regs x )) = code start + n
)

.

That is, a τ -augmented locinv is a locinv which specifies a particular program
counter which is (provably) inside the code block. Taking such a locinv as
input, the decoder can determine, via the global invariant, what instruction is
going to be executed; and then it can tailor its output based on the instruction.

In the implementation, the extension doesn’t produce the augmentation
explicitly. Instead, it produces simple locinvs which are syntactically checked
by the trusted framework. Locinvs for which the program counter of the locinv
is syntactically identical to code start+n for some n are called direct locinvs;
other locinvs are called indirect locinvs. Only direct locinvs are accepted by
the trusted framework.

The terminology is motivated by direct and indirect jumps; by inspection
of the decoder definition given below, it should be clear that the decoder only
produces direct locinvs,3 except in the case of an indirect jump. When the
extension covers the decoder output after an indirect jump, it can only use
direct locinvs. This can be done either with progress continuations, or by a
case analysis over the possible explicit program counters which might be the
target of the indirect jump. For further discussion see Section 4.4.

In Figure 3.3 the decoder is defined. Recall that a (τ -augmented) decoder
takes as input a τ -augmented locinv, and returns a pair, consisting of an state
predicate (the local safety condition) and a list of locinvs (the possible next
states). The figure shows, given the instruction to be executed, the local safety

3Program counters of the form &L for a label L can be automatically translated to the
direct form.
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Instruction P D
set r e {C with regs = λx .ρ[pc 7→ (pc ρ+SAL 1);

r 7→ e ρ]}
read r a λρ. addr(a ρ) {C with regs = λx .ρ[pc 7→ (pc ρ+SAL 1);

r 7→
(

sel(rM ρ) (a ρ)
)

]}
write a e λρ. addr(a ρ) {C with regs = λx .ρ[pc 7→ (pc ρ+SAL 1);

rM 7→
(

upd(rM ρ) (a ρ) (e ρ)
)

]}
jump L {C with regs = λx .ρ[pc 7→ &L]}
ijump e {C with regs = λx .ρ[pc 7→ (e ρ)]}

bnez e L
{

C with regs = λx .ρ[pc 7→ (pc ρ +SAL 1)],

assume = λx .(e ρ) = 0 ∧ (C.assume x ),

C with regs = λx .ρ[pc 7→ &L],

assume = λx .(e ρ) 6= 0 ∧ (C.assume x )
}

invalid λρ.False { }

Figure 3.3: The decoder. When the P column is left blank the local safety con-
dition is True. In the D column, “ρ” is intended as shorthand for (C.regs x ).

condition P and the output continuations D in terms of the input locinv C.
This decoder uses the SAL instructions modified to use labels for direct jumps,
as in Figure 3.2.

When the P column is left blank the local safety condition is True. In the
D column, “ρ” is intended as shorthand for (C.regs x ). Finally, the notation
“C with regs=. . . ” is intended to represent the locinv which is obtained by
taking C and replacing its regs field with the given value. Observe that in no
case does the decoder change the type or progress fields of the input locinv.

Recall the definition

Definition 3.3.1. A τ -augmented decoder decode satisfies the decoder cor-
rectness property with invariant I iff, for any τ -augmented locinv (C, t), where
(P,D) = decode(C, t),

∀i.∀ρ.(ρ |=I
i+1 C) ∧ (P ρ) =⇒

(∃ρ′.ρ ρ′) ∧
(

∀ρ′.ρ ρ′ =⇒ prog ρ′ ∨
(

∨

D∈D

ρ′ |=I
i D

)

)

.
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That is, for any state ρ satisfying the input locinv C (and the global invariant
I), if the local safety condition P holds, then progress is possible for at least one
step, and the resulting state is either safe (can make indefinite safe progress),
or will satisfy some D ∈ D (and I), at an index one less than that by which
the original state satisfied C.

Then we have

Theorem 3.3.2. The decoder decode defined in Figure 3.3 is correct with
respect to the global invariant I.

Proof. The proof is a straightforward case analysis over the instruction to be
executed, referring to the notion of  derived from Figures 3.1 and 3.2. The
witness of the existential variables for the satisfaction of the output continua-
tions in D is the same as the witness for the input continuation C.

One point worth noting is that the output continuations will actually be
satisfied at index i + 1 rather than i (the “strong decoder correctness” de-
scribed in Section 2.7.4). As mentioned there, the monotonicity of |= ensures
satisfaction at i as well.

The preservation of the global invariant I is handled by the fact that addr
specifically excludes all the addresses in the code block, so the code is preserved
by all memory updates allowed by the decoder.

Finally, recall from Section 3.1.5 that we might like to expand the global
invariant with facts, provided by the extension, which are guaranteed to be
preserved by  because they depend only the the execution-specific parame-
ters. It is not hard to see that decode is correct with respect to any invariant
I ∧ J where J is automatically preserved by  . This depends on the fact that
the decoder’s output locinvs have the same progress continuations as the input
locinvs; because of that, whenever

ρ |=I
i C, ρ ρ′, and ρ′ |=I

i D,

it also holds that
ρ |=I∧J

i C =⇒ ρ′ |=I∧J
i D.
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3.4 The Algorithm

Having defined the logical notions of state,  , and a correct decoder, it is
now possible to put together an algorithm for program verification. Recall the
soundness theorem

Theorem 3.4.1 (Soundness of the Open Verifier). Let I : state → Prop,
and decode be a τ -augmented decoder which satisfies the decoder correctness
property with invariant I. Suppose a set E of τ -augmented locinvs is closed
under scanning with respect to decode and I.

Suppose also that E coversI{C0}, where C0 is an initial locinv for a program
in the sense that for any possible initial state ρ0, ρ0 |=I

i C0 for all i. Then the
program is safe in the sense that each such ρ0 can make indefinite safe progress.

The role of the untrusted extension is to produce the set E of locinvs, and
the necessary proofs:

• that E coversI{C0};

• that E is closed under scanning ; that is, for each E ∈ E , letting (P,D) =
decodeE, it is the case that

– ∀i.∀ρ.(ρ |=I
i E) =⇒ (P ρ);

– and E coversI D.

As will be seen, part of the production of E is handled by the trusted
framework.

3.4.1 Trusted Components

The trusted Open Verifier framework can be divided into four components:

1. the initializer;

2. the decoder;

3. the proof checker; and

4. the director.
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The initializer is responsible for producing the initial locinv C0 for the
program to be verified. The decoder is simply a wrapper for the logical decoder
defined in Section 3.3. The proof checker checks the extension’s proofs. Finally,
the director is responsible for working with the extension and the decoder to
produce the set E and ensure that it is closed under scanning.

3.4.2 The Director

The heart of the Open Verifier algorithm is a dialogue between the trusted
decoder and an untrusted extension, as shown in Figure 3.4. The decoder, given
a direct locinv, describes the conditions under which that locinv is safe (the
local safety condition P ) and will create the locinvs describing the state after
further execution (the locinvs D). The extension is responsible for knowing
why the program is safe, presumably based on its domain-specific knowledge,
e.g., the source language and the compilation strategy. For every locinv that
is considered, the extension must, first, prove the local safety condition, and
second, prove that each of the decoder’s local invariants are safe. This latter
obligation is met by providing new locinvs E over which the whole process is
repeated and by proving that the safety of its locinvs implies the safety of the
decoder’s, as E coversI D.

The director is responsible for coordinating the dialogue between the de-
coder and the extension, ensuring that all facts are checked and that all program
paths are explored, as shown below:

director Scanned [ ] = success

director Scanned (C::ToScan) =

let (P,D) = decoder C in

let (pfP , E , pfcovers) = extension.scan C in

if proofok pfP
(

∀x : C.type. (C.assume x ) ∧ Lemmas =⇒
(P (C.regs x ))

)

and

proofok pfcovers (E coversI∧Lemmas D)

then director (C::Scanned)
(

(E \ (C::Scanned)) ∪ ToScan
)

else failure

The director maintains two lists of direct locinvs, called Scanned and ToScan.
Initially, Scanned is empty and ToScan contains a list of locinvs which the ex-
tension can prove cover the initial locinv (see below). The verification succeeds
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Figure 3.4: The Open Verifier architecture.

if the director achieves a state where ToScan is empty. The process of “scan-
ning” a locinv involves querying the decoder and the extension, checking the
relevant proofs of the local safety condition and coverage, and adding any new
locinvs given by the extension to the ToScan list. Observe that the extension
may wish to prove coverage using a previously scanned locinv (for instance,
when scanning a loop where the locinv encodes the loop invariant); in this
case, the locinv will not be scanned again (as indicated by the removal of all
previously scanned locinvs at the recursive call). In the implementation, rather
than actually comparing new locinvs with all previously scanned ones, this is
handled by allowing the extension to name locinvs, and refer to previously
scanned locinvs by name.

3.4.2.1 The Open Verifier Algorithm

I need to explain the use of Lemmas in the above algorithm for the director.
As discussed in Section 3.1.5, we will allow the extension to provide proofs of
lemmas which can be used to establish the necessary proofs. Formally these
Lemmas are dependent on the execution parameters but for the implementation
this dependence is suppressed and they are treated simply as logical facts.
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For the purposes of the algorithm, the director can be understood as taking
an extra parameter Lemmas, formally of type paramsType → Prop; and the
global invariant for the proofs is “I ∧ Lemmas”, or, more precisely,

λρ.(I ρ) ∧ Lemmas(params ρ).

In the proofs of local safety conditions, Lemmas should be understood as
(Lemmas (params (C.regs x ))). This has the correct formal effect of instantiat-
ing the lemmas with the identical value of paramsType as is used to instantiate
any use of addr in the local safety condition.

This is all formal detail; intuitively the lemmas can pretty safely be under-
stood as global logical facts.

The complete Open Verifier algorithm is

let C0 = initializer() in

let (Lemmas, pfLemmas, E , pfcovers) = extension.init C0 in

if proofok pfLemmas
(

∀x : C0.type. (C0.assume x ) =⇒

Lemmas(params (C.regs x))

)

proofok pfcovers (E covers(I∧Lemmas){C0})

then director { } E

else failure

The requirements on the extension are that it provide the two methods:

init : locinv →

(paramsType → Prop) × proof × locinv list × coverproof

and
scan : locinv → proof × locinc list× coverproof.

For the verification to succeed, the output locinvs must always be direct locinvs,
and the proofs must be correct. For proof and coverproof see Section 3.4.3.

The soundness of this algorithm—that a program successfully verified by it
is, in fact, safe in the necessary sense—follows from Theorem 2.6.11. The cor-
rectness of the decoder has already been discussed (Section 3.3). The initializer
must produce an initial locinv C0 which is satisfied by every initial state with
global invariant I ∧ Lemmas—see Section 3.4.4.
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The contents of Scanned upon the successful termination of the director
algorithm form the set of locinvs which is closed under scanning. To see this,
take any E ∈ Scanned. At some point in the operation of the director algorithm,
E must have been at the top of the ToScan list (the C in the written algorithm).
Let (P,D) = decodeE. When E was scanned, the extension had to provide a
proof (pfP ) of

∀x : C.type.(C.assume x ) ∧ Lemmas =⇒ (P (C.regs x ));

this implies
∀i.∀ρ.(ρ |=

(I∧Lemmas)
i E) =⇒ (P ρ).

Similarly the decoder must provide a set E of locinvs and a cover-
age proof pfcovers of E coversI∧Lemmas D. But clearly E ⊆ Scanned, so
ScannedcoversI∧Lemmas D by Lemma 2.7.8. This establishes the Scanned is
closed under scanning in the sense needed to use Theorem 2.6.11.

For the termination of the algorithm, see Section 3.5.1.

3.4.3 The Proof Checker

The proof checker is the component of the trusted infrastructure which checks
the proofs provided by the extension.

In the implementation of the algorithm, the various components of the
system are not embedded within the logic, but rather act upon syntactic rep-
resentations of logical entities (terms and types). In particular, the untrusted
extension takes as input (a syntactic representation of) a proof obligation,
and produces (a syntactic representation of) a proof. The proof checker takes
the proof obligation and its purported proof (that is, their syntactic repre-
sentations) and checks that the proof indeed proves what it is supposed to.
Implicitly then, part of what we must trust about the trusted components of
the system, is that their encoding and decoding of these syntactic representa-
tions is faithful to the actual logical manipulations the trusted components are
supposed to perform.

I use the types proof and coverproof to refer to the proofs to be pro-
duced by the extension. The type proof refers to proofs of ordinary logi-
cal facts, encoded perhaps as natural deductions or as terms in Coq. The
type coverproof is used for proofs of locinv coverage; the notion of correct
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coverproof can be understood as defined by the proof rules in Figure 2.1. Ob-
serve that coverproof depends on proof. Observe also that no proof provided
by the extension needs to include explicit reasoning about state,  , locinv,
|=, safe, or covers; any such reasoning is broken down, by the structure of
the implementation and the mechanism of coverproof, into proofs of simple
logical facts.

Although in this thesis and in the prototype implementation I have made
free use of the full logic of the Coq system, as I discuss in Section 2.7.6, the proof
checker need actually only check a tiny fragment of Coq logic, corresponding
to some particular typed first-order logic.

3.4.4 The Initializer

The fact that the verification actually verifies the program in question depends
formally on two things: first, that the global invariant I refers to the instruc-
tions of the program (as discussed in Section 3.3); and second, that the initial
locinv C0 correctly reflects the possible initial states of execution of the pro-
gram. The initializer is the component responsible for setting up the initial
locinv.

The initial locinv reflects any guarantees that can be made about the initial
values of the registers and the memory. Consider an example system in which a
program is guaranteed to receive the lowest and highest available heap addresses
in registers $gp and $s7, with the initial stack point at the highest stack
address, where furthermore a whole megabyte of stack is guaranteed to be
available. The initial locinv must include these claims, and also the fact that
the data segment of the program has been loaded into memory. Formally the
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initial locinv might then have the form

C0.type = state;

C0.regs = λx . x [$pc 7→ &main;

$gp 7→ heap start;

$s7 7→ heap end;

$sp 7→ stack end]

C0.assume = λx .(stack end− stack start) ≥ (srl 1 20) ∧

(sel (rM x ) data start) = · · · ∧

(sel (rM x ) (data start + 1)) = · · · ∧ . . .

C0.progress = {λx .abort}

where abort is the locinv specifying any jump to & abort. The extension
can establish where addr holds by means of its definition (Definition 3.1.1).
The extension also needs some way to relate labels in the assembly program
to actual locations in the data in memory; for example it needs access to such
facts as &first data label = data start. These are also included in the
assumptions of the initial locinv.

It should be clear that such an initial locinv C0 has the desired property
that ∀i. ρ0 |=I

i C0, for any initial state ρ0. Recall from Section 3.1.5, that in
order to allow the extension to add its Lemmas to the global invariant, the initial
states must satisfy the initial locinv with the global invariant I ∧ Lemmas. We
must ensure that this will hold for any Lemmas the extension might supply, as
long as

∀i.∀ρ0.(ρ0 |=
I
i C0) =⇒ (Lemmas (params ρ0)).

As mentioned before the difficulty lies in the progress continuations of the initial
locinv. As described above, where the only progress continuation reflects a call
to a safe abort, it is clear that the call is safe for any global invariant. This
is true for any progress continuation that doesn’t specify some return to the
program.

A more complicated situation might occur in the initial locinv, if we used it
to contain safety claims about trusted run-time functions (as discussed in Sec-
tion 3.2.1). For instance, C0 could claim that it is safe to jump to &OSFunction
as long as it is safe to continue execution from the current return address
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(perhaps also with certain extra facts corresponding to the postcondition of
OSFunction). Since the Lemmas, being dependent only on the execution pa-
rameters, are automatically preserved by  , it should be easy to argue that
the safety claim is still valid with the stronger global invariant; but I will not
discuss this more complicated case further in this thesis.

3.5 Further Implementation Issues

In this section I will more directly consider certain issues arising from the
implementation of the logical formalism, rather than that formalism itself.

3.5.1 Termination

We want the verification algorithm of Section 3.4.2.1 to always terminate with
either success or failure. This requires that the director and the extension
always terminate.

To ensure the termination of the director (relative to that of the extension),
we can have the director keep a list of the program counters of all the direct
locinvs that it scans. Then it can terminate with failure after seeing a program
counter some fixed number of times. Since there are only finitely many program
counters in the program, this guarantees that the director will only scan a finite
number of locinvs.

The reason to allow a program counter to be scanned more than once, is
that the extension might traverse a loop several times before finding the correct
loop invariant (see Section 4.2). If necessary, the system could be expanded
so that director could even query the extension, for some finite limit on how
many times it expects to scan a particular program counter.

Ensuring the termination of calls to the extension is trickier. The extension
is provided as executable code. It would be impractical to require the extension
to prove its own termination. We could require that the extension be written in
some language (or logic) which guarantees termination. In practice, we think
that it will suffice to introduce a simple timeout mechanism. This will allow
the extension writer to use any language to produce the extension, perhaps
including techniques or heuristics for which it would be difficult to guarantee
termination otherwise.
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3.5.2 Memory Safety of the Extension

Since the extension is provided as executable code, we need to ensure that the
extension itself is safe. In particular, a guarantee of its memory safety and
lack of side-effects will be needed before verifications using it can be trusted;
otherwise, it could “cheat” by interfering with the trusted framework’s memory
or with the operating system.

To prevent this, we could run the extension in a sandbox enforced either
by hardware mechanism or by software-fault isolation [41], and it should not
be allowed to access system calls. Alternatively, we could require that the
extension be written in some type-safe language or using some mechanism like
CCured [34], and compiled with a PCC-enabled compiler so that a trustworthy
proof of the extension’s safety is available.

Interestingly, we can use the extension to verify itself with the Open Verifier.
Only while this is done we must run the extension in a sandbox. This latter
condition ensures that the extension is actually memory-safe in the run in which
it is used to “prove” its own memory safety for all runs. After this step we
can safely run the extension in the same address space as the rest of the Open
Verifier. This provides a way to bootstrap the process so that we incur the cost
of the sandbox only once during a configuration phase.

3.5.3 Annotations

We want to allow the extension to require certain extra information about the
programs it verifies. Perhaps the extension is geared to work with a certifying
compiler which can supply such information. For example, it may be that
the extension cannot, or can only with difficulty, determine the intended types
of function arguments from the compiled code; but that this information is
immediately available from the source code. In such a situation the extension
might only work with a compiler which supplies information about the types
of functions.

We call such additional information annotations. It is not terribly important
the mechanism by which the annotations are made available to the extension; it
could be sent in a separate file, for instance. In our prototype implementation,
the annotations are sent as comments in the assembly code of the program.

In the extreme case, one could write an extension which does no more than
follow a recipe for verification provided as annotations, with each proof to be
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given being supplied. This extension makes the Open Verifier an instance of
proof-carrying code.

3.6 What Do We Trust?

Certain aspects of this question are common to any verifier or PCC implemen-
tation. In particular, it is always necessary to trust that one’s abstraction is
sufficient to correctly represent the semantics of the machine and safety policy;
that the program to be verified is correctly translated into the abstraction; and
that the proof checker is correct. Of course, how difficult it is to trust these
things will depend on the particulars of the abstraction and the logic.

In terms of the Open Verifier, it is necessary to trust:

• that the notions of state and correctly represent the intended machine
semantics and safety policy;

• that the initializer produces an initial locinv which correctly represents
the possible initial states of the program to be verified; and

• that the proof checker is correect.

Since the Open Verifier does not produce a single verification proof and
then check it, but rather breaks down the verification into small steps provided
by the extension, we also need to trust those trusted components:

• that the decoder, as an implemented piece of executable code, correctly
performs the functions of a correct decoder in the sense of the logical
formalism; and

• that the director correctly manages all of the proofs provided by the
decoder in such a way that they could all be put together into a complete
verification.

In particular, we need to trust the way in which these components work with
syntactic representations of complex logical notions such as locinvs; that they
correctly reflect the actual logical facts. Also,

• in order not to trust the extension, we need to trust the mechanism which
establishes the memory safety of the extension, or prevents a lack of safety
from affecting the verification.
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Finally, there are some issues which arise as a result of the particular way
in which we have implemented the Open Verifier:

• Since we verify SAL programs rather than programs in actual machine
languages, we need to trust the SAL translator; in particular, that any
real program which translates into a safe SAL program is, in fact, safe.

• Since we verify assembly code rather than machine code, we need to trust
the assembler/disassembler.

These issues are discussed further in Chapter 5.
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Chapter 4

Extensions

In this chapter I discuss extensions for the Open Verifier. The main focus
of this thesis is on the structure of the Open Verifier, not the building of any
particular extension. However, it is important to demonstrate that extensions
can be written with reasonable effort which apply to interesting programs. I do
this by example, by developing an extension for the object-oriented language
Cool. I begin by introducing the language and its type system, in particular
the low-level type system which can be used to describe the assembly code
produced by the coolc compiler. Then I describe the process by which we can
produce an extension which verifies such code, starting with a “conventional
verifier” which works much like a bytecode verifier, and building up in layers
something which can be checked by the Open Verifier framework.

The discussion of Cool, the type system of compiled Cool code, and the Cool
extension is not intended to be complete in detail. Readers may be reassured to
remember that, from the standpoint of soundness, it does not matter whether
the Cool extension reflects an accurate and complete understanding of the
Cool type system and its compiler. Because of the Open Verifier framework,
any programs we are able to verify with the Cool extension are memory-safe.
It is provided as executable code and can use whatever heuristics it likes; we
do not need to verify anything about the extension itself.

Finally I include a discussion of handling of certain software conventions,
the stack and function calls, which can be used in a modular way by other
extensions as well.
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4.1 Cool

In this section I discuss the structure of compiled programs in Cool, the Class-
room Object-Oriented Language [3]. Cool is generally a subset of Java (with
one interesting exception being the SELF TYPE construct). Cool is used to
teach one-semester compiler classes at the University of California, Berkeley.
We chose Cool as the initial demonstration language for our experiments be-
cause it is relatively simple, and we already have compilers and test programs
available. Furthermore, we eventually intend to encourage the students who
develop compilers for Cool to use the code verifier for quickly discovering bugs
in their compilers, a strategy that has proved very effective in larger compiler
projects [11].

4.1.1 Programs in Cool

A Cool program consists of a list of class definitions, each specifying:

• the name of the class;

• what class it inherits from (defaulting to the built-in class Object);

• the attributes of the class, specified by declaring their types, and option-
ally giving an expression with which the attribute is initialized in every
new object of the class; and

• the methods of the class, specified by declaring the names and types of
the formal parameters, the return type, and the code to be executed on
method dispatch.

The Cool program begins execution by creating a new object of class Main

and dispatching to its method main; these definitions must be supplied by the
programmer.

A class specifies a list of attributes and a list of methods. Attributes, the
dynamic data associated with an object of a class, always have local scope;
methods always have global scope. Method dispatch has a pass-by-value se-
mantics.

The Cool language is type-safe, with classes and types coinciding. All val-
ues are members of some class. Cool supports single inheritance, with the class
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hierarchy rooted at the built-in class Object; subtyping is given by the inher-
itance hierarchy. A case expression allows branching on the dynamic type of
an object.

In addition to Object Cool supplies four other built-in classes: IO (which
supplies methods useful for input and output), and the three “basic classes”
Int, Bool, and String. Except for objects of the basic classes, any uninitialized
object has the special value void; an isvoid operator is provided to test for
this value. The three basic classes have special default values which correspond
to 0, false, and the empty string, respectively; these values are not primitive but
objects like any other. An equality operator can test whether objects of basic
classes have the same value; on all other classes equality is pointer-equality.
User-defined classes may not inherit from the basic classes. The new operator
takes the name of a class and produces a new initialized object of that class.

A special identifier self allows the programmer to reference the object on
which the current method is operating. A special type SELF TYPE allows the
programmer to reference the dynamic type of the self object. The use of
SELF TYPE is restricted to the return types of methods, the declared types of
attributes, and the expression new SELF TYPE.1

The Cool language is very similar to Java, and I will not go into further
detail here, except as needed to provide examples of verifications. For a detailed
description of Cool’s syntax, type-checking and operational semantics, see [3].

4.1.2 Compiling Cool

In order to design an extension to verify compiled Cool, it is necessary to
study the structure of the compiled code. The standard Cool compiler, coolc,
produces MIPS code, to be run on the MIPS emulator spim [21]. Run-time
functions and methods are in a hand-coded MIPS assembly file trap.handler.
These include functions to be used in compiled code, such as the equality tests
on basic classes, and run-time errors such as dispatching or case analysis on
void; and also the methods of the built-in classes, notably Object.copy which
is also used to allocate new objects. The implementation of Object.copy

includes calls to a generational garbage collector.
The layout of a Cool object in memory is as follows; the offsets are in bytes.

1SELF TYPE may also be used in let. . . in expressions, which do not add any particular
challenge to the verification process, and will not be discussed further here.
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offset −4 Garbage collector eyecatcher
offset 0 Class tag
offset 4 Object size (in 32-bit words)
offset 8 Dispatch pointer
offset 12. . . Attributes

The garbage collector “eyecatcher” always has the value −1. The class
tag is an integer shared by all objects of the same dynamic type, used most
importantly by the case statements to perform branching on the dynamic type
of an object. The object size, which does not include the eyecatcher, is used
only by the allocator Object.copy. The dispatch pointer holds the location
of a table with pointers to each of the object’s methods. This dispatch table
is simply a list of the code locations for each method, the first at offset 0,
the second at offset 4, etc. Dynamic dispatch is handled by ensuring that all
ancestors of a class C have the methods originally defined by C at the same
offsets. So for example, if C has method foo at offset 12, then any subclass D

will have its method foo at offset 12—either the original C.foo if the method
was not overridden, or the new D.foo otherwise.

For each class C including the built-in classes, the compiled program will
include in its static data an object C protObj and some code C init. The
object C protObj is a skeleton object of class C with the correct class tag,
object size, and dispatch pointer (to the dispatch table stored at the label
C dispTab). The code C init is a function which takes an object of class C,
whose location is given by the contents of the $a0 register on function entry,
and performs the attribute initializations defined by C and all of C’s parent
classes.

The new C operation is compiled by calling the run-time Object.copy

method on C protObj, and then calling C init. Finally, new SELF TYPE is
handled by looking up the correct protObj and init in a table indexed by the
class tag of the current self. This table is stored at label class objTab, and
stores a pointer to C protObj at offset 8 times the class tag of class C, and a
pointer to C init at offset 4 more than that.

More detail on Cool’s run-time functions and methods, and how they inter-
act with the compiled code, can be found in [2].
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4.1.3 Verifying Cool

Now I will look at how to verify the memory-safety of compiled Cool programs.
To start I will discuss an approach to writing a verifier independently of the
Open Verifier framework; this “conventional verifier” will then be adapted to
the framework by adding the appropriate elements.

We present the behavior of our conventional Cool verifier by example, using
the following fragment of a Cool program2:

class S { // A “sequence” class
S next() { . . . } // Iterator method

}
class R extends S {
S next() { . . . }

void scan() { // Scan the sequence
S x = self;

do { x = x.next(); } while (x != null)

}
}

We assume that our compiler and SAL translator transform the body of method
R.scan into the SAL code as shown in Figure 4.1. We elide the function
prologue and epilogue. Note that Lnull labels a fragment of code that issues a
null pointer exception and Ldone labels the top of the epilogue (neither shown
here). The notation rx denotes a register name. For clarity, we have used
subscripts on the register names according to the source variable to which they
correspond (e.g., rx corresponds to x) or to which role they play (e.g., ra holds
the return address, rarg0

holds the first argument of a function, and rret holds
the return value of a just-returned function).

The self argument is passed in the rarg0
register. The instructions in

lines 3–9 implement the method dispatch x.next, consisting of a null check
(line 3), fetching of the pointer to the dispatch table (line 4), fetching of the
pointer to the method (line 5), setting the self argument and the return
address (lines 6–7), and finally the indirect jump in line 8. This particular

2This example actually uses Java syntax, modified to use Cool’s self instead of Java’s
this.
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1 R.scan: set rx rarg0

2 Loop:
3 bnez (rx = 0) Lnull
4 read rt (rx + 8)

5 read rt (rt + 4)

6 set rarg0
rx

7 set ra &Lret
8 ijump rt
9 Lret:

10 bnez (rret = 0) Ldone
11 set rx rret
12 jump Loop

Figure 4.1: Assembly language version of the example.

compilation assumes that the pointer to method next is at offset 4 in the
tables for classes S and R.

Our approach to writing a Cool verifier is following the model of the Java
or MSIL bytecode verifiers: perform abstract interpretation of the code to find,
for each program point, an approximation of the dynamic type of the contents
of each variable [23]. The abstract state is a mapping of local variables to
types in the class hierarchy. Method signatures give the initial abstraction for
the method entry point. At each step through the code, the abstract state is
updated to reflect the effect of the given instruction on the types of the vari-
ables. Bodies of loops might have to be scanned several times if the interpreter
discovers that it needs to relax the abstract state on loop entry.

Consider, for example, the code in Figure 4.1, assuming for the moment
that the code fragment in lines 3–9 is treated atomically as a virtual method
dispatch to method next in class S and with argument x—this assumption
reflects how verification would be done in the JVML or MSIL where there are
specialized bytecodes for various kinds of calls.

In Figure 4.2, we show the abstract state at each program point right-
justified and boxed, using the notation rarg0

: R to say that the dynamic type
of rarg0

is a subtype of R. The abstract interpreter starts with the assumption
that rarg0

has type R, given by the signature of method R.scan. After it sees
the assignment in line 1, the abstract state reflects that rx also has type R.
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Since we are treating lines 3–9 atomically, ignore the abstract state annotations
marked with ∗ for now. Because R is a subtype of S, the verifier type checks the
virtual call and adds the assumption that after line 8 the return value (assumed
to be in rret) has type S. The interesting point is that after the assignment in
line 11, the abstract state of rx changes to S. This in turn means that when
the abstract interpreter reaches the start of the loop, it will have to join the
abstract states after lines 1 and 11 to conclude that rx : S after line 2. The
abstract interpreter continues to scan the loop body until it reaches a fixpoint.
Figure 4.2 shows the abstract state after the first pass through the loop, not
at the fixpoint.

We now turn our attention to how our verifier can check the implementation
of the virtual method dispatch. The verifier recognizes the null check, and it
remembers in its abstract state that rx is not null after the check. It then
recognizes that reading from offset 8 into an object rx yields the dispatch table
of that object. We use the dependent type dispatchPtr rx to encode this
property. (Note that it is not sufficient to remember that the dispatch table
belongs to an object of static type R because that would allow the fetching
of the method pointer from an object whose dynamic type is different from
that of the self parameter.) Then the verifier recognizes that we are fetching
in rt the pointer to the method at offset 4 in the table of rx, as encoded by
method rx 4. In the next line, the verifier remembers in its abstract state not
only the type of the argument, but its value as well.

All of these steps collect as part of the abstract state enough information
that the indirect jump instruction on line 8 can be verified, as follows. Since
rt : method rx 4 and rx : R, the verifier can consult the metadata accompanying
the compiled code to find that a method next is being called. Since rarg0

= rx,
we can check that the self argument is equal to the object that was used
to resolve the method. Additionally, the verifier must check that the return
address is correctly set and then continues the abstract interpretation of the
code.

One important observation about verifying compiled code is that it is helpful
to expand the notion of types beyond the programmer-level types. Thus, in
addition to the types of classes, we now have the type of a dispatch table of
an object, and the type of a method of an object at a particular offset. Other
compiled-code-level types useful in verifying Cool include: the class tag of an
object, the init method of the dynamic type of an object, etc. It is also useful
to include pointer types, so that for instance we can say that if rx is an object
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rarg0
: R

1 R.scan: set rx rarg0

rx : R, rarg0
: R

2 Loop:
3 bnez (rx = 0) Lnull

rx 6= 0, rx : R, rarg0
: R ∗

4 read rt (rx + 8)

rt : dispatchPtr rx, rx 6= 0, rx : R, rarg0
: R ∗

5 read rt (rt + 4)

rt : method rx 4, rx 6= 0, rx : R, rarg0
: R ∗

6 set rarg0
rx

rarg0
= rx,

rt : method rx 4, rx 6= 0, rx : R
∗

7 set ra &Lret

ra = &Lret, rarg0
= rx,

rt : method rx 4, rx 6= 0, rx : R
∗

8 ijump rt

rret : S, rx 6= 0, rx : R

9 Lret:
10 bnez (rret = 0) Ldone
11 set rx rret

rx : S, rret 6= 0, rret : S

12 jump Loop

Figure 4.2: Verification of the example by abstract interpretation. (The states
marked ∗ are intermediate stages of verifying the method dispatch, which would
be treated atomically in most bytecode languages.)
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of a class with a field of type T at offset 12, then rx + 12 has type ptr T .
In the next section, I discuss how we can turn this verifier into an untrusted

verifier for use in the Open Verifier architecture.

4.2 The Cool Extension

In this section I will discuss how to take the standalone Cool verifier described
above, and build on top of it a Cool extension to work in the Open Verifier
framework. This discussion is meant to describe a prototypical technique for
building extensions: start with a “conventional verifier” which performs ab-
stract interpretation on the code of interest, after the fashion of Java bytecode
verifiers; then use the methods outlined in this section to add the extra infor-
mation necessary for packaging as an extension.

In real verifications the Cool extension must deal constantly with the con-
ventions of the stack and function calls; in this section, I will mostly suppress
such considerations, and will discuss general ways in which any extension might
handle these issues in Section 4.3 and Section 4.4.

Generally a conventional verifier works by establishing some abstract state
(like a typing state) at each program point. Consider the tasks which a con-
ventional verifier must perform:

1. to parse each instruction in the code;

2. to check that the abstract state before an instruction is strong enough to
ensure safe execution of the instruction;

3. to adjust the internal abstract state according to the semantics of each
instruction, and to find the successors of an instruction; and

4. to scan the code until all instructions have been verified and until the
abstract state before an instruction is “weaker” than that established by
all its predecessors.

The first task, of parsing the instructions, is left entirely to the trusted frame-
work. The last task, of ensuring that the verification process complete, is also
the task of the trusted framework (in fact, of the director module). The middle
two tasks are the interesting ones from the standpoint of developing an exten-
sion. Each operates locally, one instruction at a time. Both the extension and
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the decoder will perform these tasks, with the extension’s results being checked
against the decoder’s requirement.

In effect, then, the role of the extension is to take the results of of the con-
ventional verifier, and package them in a way that the decoder can understand,
together with a proof that the results are correct. In particular, the extension
must take the conventional verifier’s checks of memory safety and produce a
proof of memory safety; and the extension must take the conventional veri-
fier’s successor abstract states and produce a proof (in fact, a coverage proof)
that they follow according to the (decoder-given) semantics of the executed
instruction.

This will require, in particular, that the abstract state be described via
logical predicates which are defined in such a way that these proofs can be
constructed. In fact, just to be put in a form which the decoder can understand,
each abstract state must be packaged as a locinv.

Recall now the interface to be exported by the extension:

init : locinv →

(paramsType → Prop) × proof × locinv list × coverproof

and
scan : locinv → proof × locinv list× coverproof.

The behavior discussed here corresponds to the scan method, though I will
also bring in the Lemmas to be produced by init. For the initial coverage proof
see Section 4.2.3.1.

4.2.1 Local Invariants for Cool

To create locinvs corresponding to the state of the Cool verifier, we must inter-
pret the various features of the abstract state in logic. This is the most difficult
part of building the extension. It requires observing and making explicit the
invariants that are implicit in the behavior of the conventional verifier, and
defining in the logic of locinvs those invariants and all the typing and other
assertions made in the abstract states.

Finding the correct definitions is, as is often the case in logic, a matter of
balance. On the one hand the definitions need to be strong enough so that the
invariants and typing assertions entail enough to prove memory safety and the
preservation of the invariants. On the other hand, the definitions need to be
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weak enough so that the invariants can be established to hold on the initial
state of execution (see Section 4.2.3.1). In practice we have found it useful to
begin with only a rough idea of the invariants, and then to start in directly on
the lemmas which need to hold for all the program instructions to be handled
in the desired way. Then, the definitions of the invariants and other assertions
can be refined in order that the lemmas become provable, while trying to retain
the provability of the initial state.

4.2.1.1 Handling Recursive Types

An important early consideration has to be the handling of recursive types.
How can we express recursive Cool classes in the (limited) logic of locinvs?
Other approaches to recursive types in foundational proof-carrying code, such
as described in [6], have relied on an extensional notion of types.3 By this I
mean defining the typing predicate in such a way that any block of data with
the correct internal structure will have a given type—so for instance, even if a
sequence of words from the compiled code of a function happens to “look like”
an object of class C, the typing predicate would in fact consider that location
in the code to be an object of class C.

In contrast, I will here advocate the use of an intensional notion of types.
In practice, programs will tend use some data as a value of a certain type, only
if the data was explicitly set up to be of that type (or of a type which coerces
to it). For instance, in Cool, a location in memory will be considered an object
of class C, only if that location is static object of class C in the data block of the
program; or was allocated as such by use of new C (or new D for some subclass
of C); or by use of new SELF TYPE in a context where self has dynamic type
some subclass of C; or else by a call to Object.copy from an object of some
subclass of C. In fact, since the new expressions are implemented by the coolc

compiler as calls to Object.copy, we can simplify and say that objects of class
C are only the static objects and those arising from the use of Object.copy.
Other objects do not happen accidentally.

The formalization of extensional recursive types is rather difficult. In fact,
the authors of [5] had thought (prior to the work of [6]) that it would require
formalizing substantial amounts of the mathematics of computability theory
and the theory of complete metric spaces! The formalization of intensional

3More recently, that group has moved toward incorporating intensional aspects to handle
mutable types [1].
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recursive types is much simpler, as I will show. It is true that by restricting to
intensional recursive types one is restricting the domain of programs which will
be considered type-safe (and thus memory-safe). It seems likely, however, that
one is not losing any “reasonable” programs, especially not programs produced
by “reasonable” compilers.

Because of Cool’s use of Object.copy, it is very easy to recognize at what
points in the compiled code the intensional allocation state might change. With
other languages and compilers this might be harder; it is not yet clear how
difficult it will be to adapt a compiler for a language like OCaml so that it
indicates where all allocations of objects of recursive type occur.

4.2.1.2 The Cool Typing Predicate

The most important predicate used by the Cool extension will be the hasType

predicate, which holds of a val and a coolType, which latter is an inductive
type to be defined by the extension. However hasType will also have other
parameters. First, typing clearly depends on the particular class structure
used in a given program: the inheritance hierarchy, the types and offsets of the
attributes of each class, the location of the static objects in the data block of
the program, etc. Using the framework of initial-state lemmas as discussed in
Section 3.1.5, the extension could define a different hasType for each program,
and prove the necessary lemmas about each particular hasType each time. To
simplify the current discussion, I will assume a single hasType parametrized
over a predicate, denoted by H, of the inductive type hierarchyType. Then
the lemmas will be proven to hold parametrically in any H which meets certain
properties. The extension will have to define H and prove those properties as
part of the initial coverage proof for each particular program.

In order to implement the intensional recursive types as discussed above,
hasType and other types will depend on another parameter, called Alloc, of the
extension-supplied type allocType. Values of type allocType are association
lists associating locations in memory to classes. At any point in execution (and
for every locinv the extension will consider), there is a particular Alloc of type
allocType describing the actual (intensional) state of the memory, including
the static objects supplied with the program and all objects since allocated
by Object.copy. Each locinv produced by the Cool extension will include
an existential variable Alloc, and all the typing assertions in the assumptions
of the locinv will use that Alloc as a parameter. The only points in a Cool
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program where the allocation state changes is at calls to Object.copy; see
Section 4.2.3.2.

We can now present an example of part of the definition of hasType:

hasTypeH Alloc A (class C) ⇐⇒

A = 0 ∨

(A,C) ∈ Alloc ∨

∃D.(subtypeH (class D) (class C)) ∧ (A,D) ∈ Alloc.

Here, class is the type constructor for non-basic classes—the basic classes,
which do not include the null value, require a different definition. The pred-
icate subtype is the subtyping relation which, as indicated, depends on the
information contained in the hierarchy data structure H. Essentially the defi-
nition fragment states that A is an object of class C if and only if A is null, or
A has been explicitly allocated as a type of class C or some subclass.

4.2.1.3 Invariants

Observe that the decoder and the rest of the trusted infrastructure of the
Open Verifier has no notion of the “correct” allocation state at a given point
in the execution, and so no way of checking whether the extension has set it up
correctly. The point is, of course, that the extension needn’t set it up correctly,
as long as it has the correct properties with respect to what it implies about
memory safety. From the standpoint of soundness, it is perfectly acceptable
for the extension to use an allocation state or even class hierarchy that has
nothing to do with the program in question, as long as it (verifiably) has the
same memory-safety properties. Of course, from the standpoint of creating an
extension which can reliably verify Cool programs, it is usually more useful
to think of the Alloc as being the actual one reflected by the execution of the
program.

The extension does need to communicate that the Alloc and other parame-
ters in use do have sensible properties. For this purpose each locinv will include
among its assumptions certain invariants. The first is

(hierarchyOk H)

which states that the various information about the class structure of the pro-
gram has all the consistency properties that will be needed. This includes a
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range of claims such as that static objects do not overlap, and that the subclass
relation is single-inheritance.

The second is
(allocOkH Alloc)

which states that the allocation state is consistent (with respect to the class
hierarchy). This includes such claims as that the allocation state includes all
the static objects from H, and that the various areas supposedly allocated do
not overlap. Crucially, this invariant includes the claims that all addresses
supposedly inside of allocated objects according to Alloc are, in fact, accessible
addresses. This is the link with memory-safety and the proof obligations which
will be generated by the decoder.

Finally, and most importantly, is the invariant

(memOkH Alloc M).

This holds of a memory M . It is here that the extension finally claims that
H and Alloc reflect something about the actual state of the machine, because
the M used will be the value claimed for the contents of the memory in the
regs of each locinv. This invariant makes such claims as that if a class C
has (according to H) an attribute of type D at offset OFF, and (x, C ′) ∈
Alloc for some subclass C ′ of C, then either (selM (x + OFF)) is null, or
(selM (x+ OFF), D′) ∈ Alloc for some subclass D′ of D.

In practice, the extension always maintains Alloc and even M as existential
variables. All that matters is that they satisfy the invariants; apart from that
the particular values can be forgotten. The same could be done with the
hierarchy H, but in practice it is helpful to maintain H explicitly, as then the
extension’s theorem prover can work with the H to derive needed facts, e.g.
the types of attributes at various offsets, or the subtyping relation.

4.2.1.4 The Form of Cool’s Local Invariants

I can now describe how the Cool extension uses the conventional Cool verifier to
produce new locinvs by a translation of the conventional Cool verifier’s abstract
state. For example, consider the conventional Cool verifier state before the
execution of line 1 in Figure 4.2, rarg0

: R . This translates to the following
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local invariant.

λρ. ∃Alloc,Alloc0 : allocType.

(pc ρ) = 1 ∧

(hierarchyOk H) ∧

(allocOkH Alloc) ∧

(Alloc0 ⊆ Alloc) ∧

(memOkH Alloc (rM ρ)) ∧

(hasType Alloc (rarg0
ρ) (class R))

For convenience I use the state predicate form to write the locinv; this can be
easily translated to the usual form by replacing all references to registers with
existential variables.4 H is used here not as an existential variable, but as a
stand-in for the explicit hierarchy value for the program.

The existential variable Alloc0 is used to represent the allocation state at
function start; it also appears in a progress continuation used to handle function
return, which I have omitted here. Essentially, every function call maintains the
postcondition that the allocation state at function return extends the allocation
state at function call; this allows the callee to ensure that types are preserved by
the function call even though the allocation state may have changed. Function
calls are discussed in Section 4.4.

4.2.2 Proofs for Cool

Besides packaging the coventional verifier state as a local invariant, the Cool
extension must produce the proofs required by the decoder, first to establish
the local safety conditions at each potentially unsafe instruction, and second
to establish (by coverage of the decoder’s continuations) that the conventional
verifier’s state transitions do in fact follow from the semantics of the instructions
executed.

I will first discuss some of the engineering aspects of proof production, from
our implementation of the Open Verifier. All of the proofs to be produced

4For practical reasons, in the implementation it is useful to ensure that claims of equality

between registers are represented by having the same existential variable for each, rather
than introducing an equality assertion into the assumptions. This is because the Prolog
interpreter Kettle, which we use to establish proofs, deals better with identity than with
provable equality.
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as answers to the decoder’s results are obtained via an untrusted theorem
prover. We use a proof-generating Prolog interpreter called Kettle. After the
translation of the conventional verifier’s abstract states into locinvs, the next
large piece of work is creating the lemmas, which are the Prolog program rules,
to be used by Kettle to produce the proofs. (Recall that even the coverage
proofs can be broken down into first-order proof obligations by means of the
covers proof rules of Figure 2.1.)

As mentioned above, we have found it useful to start with the lemmas/rules
which are needed to prove the proof obligations that occur when verifying
sample Cool programs. Only after getting a good sense of the lemmas do
we then complete the definitions of the typing predicates, invariants, and other
assertions used. In any case, it is important to note that during the instruction-
by-instruction verification, the Cool extension never needs to refer back to the
definitions themselves; the lemmas suffice for all the proof obligations occuring
in this stage.

It can then be considered a separate task to actually produce the proofs of
the lemmas. The lemmas and their proofs are available as a Coq script.

Now I will show by example the use of the lemmas, in the verification of a
memory load and the indirect jump from the example given in Figure 4.1. I
use C for the input locinv (scanned by the decoder and the extension), P for
the local safety condition, D for the list of the decoder’s locinvs, and E is the
list of the extension’s locinvs. In each of the following examples, we give one
step of the director algorithm.

4.2.2.1 Memory Read

Consider the scanning of the memory read on line 5. Its safety is verified
based on the fact that the contents of a dispatch table is accessible memory.
Additionally, we check that the conventional verifier’s state after the load, as
expressed by the Cool extension, is an accurate description of the state:
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5 read rt (rt + 4)

C: (pc = 5) ∧ (allocOk Alloc) ∧ (memOk Alloc rM) ∧
(hasType Alloc rt (dispatchPtr rx)) ∧
(rx 6= 0) ∧ (hasType Alloc rx (class R)) ∧
(hasType Alloc rarg0 (class R))

P : (addr(rt + 4))
D: {D} where D = ∃t : val.

(pc = 6) ∧ (rt = (sel rM (t+ 4))) ∧
(allocOk Alloc) ∧ (memOk Alloc rM) ∧
(hasType Alloc t (dispatchPtr rx)) ∧
(rx 6= 0) ∧ (hasType Alloc rx (class R)) ∧
(hasType Alloc rarg0 (class R))

E : {E} where E =
(pc = 6) ∧ (allocOk Alloc) ∧ (memOk Alloc rM) ∧
(hasType Alloc rt (method rx 4)) ∧
(rx 6= 0) ∧ (hasType Alloc rx (class R)) ∧
(hasType Alloc rarg0 (class R))

The extension must provide a proof of the local safety condition showing
∀ρ : state. (C ρ) =⇒ (P ρ), which is done by using the following lemma,
written as an inference rule:

(allocOk Alloc),

(hasType Alloc A1 (dispatchPtr A2)),

(hasType Alloc A2 (classT )),

(hasMethAt T off)
(addr(A1 + off))

with (rM ρ) for M , (rt ρ) for A1, (rx ρ) for A2, 4 for off, and R for T . Note
that hasMethAt is also implicitly parameterized by the hierarchy H. Provided
that class T has a method at offset off in its dispatch table in hierarchy H,
(hasMethAtH T off) can be deduced from the structure of H.

The Cool extension is also required to give the coverage proof (i.e., a proof of
E coversD). We are omitting here considerations of progress continuations, so
this amounts to showing ∀ρ.(D ρ) =⇒ (E ρ). The only non-trivial assertion
to be shown is (hasType Alloc rt (method rx 4)), which is shown using the
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following lemma:

(memOk Alloc M),

(hasType Alloc A1 (dispatchPtr A2)),

(hasType Alloc A2 (classT )),

(hasMethAt T off)
(hasType Alloc (selM (a1 + off)) (method a2 off))

with (rM ρ) for M , t for A1, (rx ρ) for A2, 4 for off, and R for T , along with
the key assumption that (rt ρ) = (sel rM (t+ 4)) from the decoder’s locinv D.
Note that the above lemma has the form of a typing rule, and in fact, it can
be viewed as part of the encoding of the Cool type system.

4.2.2.2 Dynamic Dispatch

Consider the scanning of the method dispatch on line 8. There are two chal-
lenges here. First, the extension must replace the indirect local invariant pro-
duced by the decoder with the list of direct local invariants that correspond to
the methods that could possibly be invoked. This replacement must be accom-
panied by a corresponding coverage proof. Second, the coverage proof must
also argue that the continuation for returning safely in each of the replacement
direct invariants is itself covered by the invariant for the instruction following
the call. This latter requirement is essentially similar to the situation with
ordinary function calls, which are discussed further in Section 4.4.

We consider the dispatch on the second iteration of the verifier through the
loop when the static type of rx is assumed to be S.
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8 ijump rt

C: (pc = 8) ∧ (ra = &Lret) ∧ (allocOk Alloc) ∧ (memOk Alloc rM) ∧
(rarg0

= rx) ∧ (hasType Alloc rt (method rx 4)) ∧
(rx 6= 0) ∧ (hasType Alloc rx (class S))

P : true

D: {D} where D =
(pc = rt) ∧ (ra = &Lret) ∧ (allocOk Alloc) ∧ (memOk Alloc rM) ∧

(rarg0
= rx) ∧ (hasType Alloc rt (method rx 4)) ∧

(rx 6= 0) ∧ (hasType Alloc rx (class S))
E : {E, IR.next, IS.next} where

E = (pc = 9) ∧ (allocOk Alloc) ∧ (memOk Alloc rM) ∧
(hasType Alloc rret (class S))
(rx 6= 0) ∧ (hasType Alloc rx (class S))

IR.next = (pc = &R.next) ∧ (hasType Alloc rarg0 (class R)) ∧
(allocOk Alloc) ∧ (memOk Alloc rM) ∧ (rarg0

6= 0)
IS.next = (pc = &S.next) ∧ (hasType Alloc rarg0 (class S)) ∧

(allocOk Alloc) ∧ (memOk Alloc rM) ∧ (rarg0
6= 0)

The locinvs IR.next and IS.next are the local invariants for the start of the
methods R.next and S.next, respectively. Above, I have shown only the as-
sumptions; both locinvs should contain a progress continuation stating that
the method may return satisfying a certain postcondition. In both locinvs the
progress continuation is the same:

CRET Alloc ρ = safe
(

λρ′. ∃Alloc′. ((pc ρ′) = (ra ρ)) ∧

(allocOk Alloc′) ∧ (memOk Alloc’ (rM ρ′)) ∧ (Alloc ⊆ Alloc′) ∧

(hasType Alloc′ (rret ρ
′) (class S)) ∧ (CS ρ ρ′)

)

.

Here, ρ is the state bound by the host locinv (that is, by IR.next and IS.next),
and Alloc′ is the existential variable for the allocation state in the host locinv.
The continuation also binds its own state ρ′ and existential variable Alloc′.
The parameterized predicate CS : state → state → Prop asserts that the
callee-save registers are preserved. In this case,

CS ρ ρ′ =⇒ (rx ρ
′) = (rx ρ).

Note that both IR.next and IS.next specify that on method return, the return
value rret will be an object of class S.
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In an actual verification, all of the locinvs considered by the extension (in-
cluding for instance C and E in this example) would have a progress continua-
tion specifying the postcondition of an eventual function return. I have omitted
these since except for CRET as they do not affect these particular examples.

The local safety condition is immediately satisfied, but the locinv produced
by the decoder is indirect, so the extension must find some way to cover it using
direct locinvs. In this case, the extension recognizes this as a method call and
continues after the call assuming the postcondition of the method. Note that
E is not sufficient to cover D. Because the extension recognizes this indirect
jump as a method call, it includes IR.next and IS.next in E . Intuitively, we need
to show it is “safe to jump to” rt and that the extension’s local invariants cover
the possible paths after the jump (including a return).

To show that E covers{D}, assume ρ : state and Alloc : allocType, and
let (AD Alloc ρ) be the assumptions of the decoder’s locinv D instantiated with
the existential variable Alloc and the registers of state ρ:

((pc ρ) = (rt ρ)) ∧ ((ra ρ) = &Lret) ∧

(allocOk Alloc) ∧ (memOk Alloc (rM ρ)) ∧

((rarg0
ρ) = (rxρ)) ∧ (hasType Alloc (rt ρ) (method (rx ρ) 4)) ∧

((rx ρ) 6= 0) ∧ (hasType Alloc (rx ρ) (class S))

The Cool extension first shows the decoder’s locinv is a valid method call, in
this case showing

(

(hasType Alloc (rarg0
ρ) (class R)) ∧ ((rt ρ) = &R.next)

)

∨
(

(hasType Alloc (rarg0
ρ) (class S)) ∧ ((rt ρ) = &S.next)

)

using the following lemma:

(hasType Alloc A1 (method A2 off)),

(hasType Alloc A2 (class T ))
∨

(T ′,L)∈(methLblsAt T off)

(

(hasType Alloc A2 (class T ′)) ∧ ((rt ρ) = &L)
)

with (rt ρ) for A1, (rx ρ) for A2, 4 for off, and S for T . A list of each of the
descendants of T (including T ) along with the value of the label for its method



101

at offset off is obtained with methLblsAt, which is (here implicitly) a function
of the hierarchy H.

The Cool extension now performs a case analysis over this disjunction,
choosing in each case the appropriate locinv in E to cover D, in this case, either
IR.next or IS.next. In each case, the assumptions of D together with the the extra
facts from the particular case of the disjunction provide exactly the assumptions
for the covering locinv IR.next or IS.next. To finish the coverage proof, in each
case the Cool extension simply needs to provide a coverage proof of the progress
continuation, which is the same Cret in both cases. Let Iret = (Cret Alloc ρ).
This “return locinv” Iret is exactly covered by the extension’s new locinv E.
To see this, assume a fresh ρ′ : state and Alloc′ : allocType, and assume
(AIret Alloc′ ρ′) where AIret are the assumptions of locinv Iret, i.e., we have the
following:

((pc ρ′) = (ra ρ)) ∧

(allocOk Alloc′) ∧ (memOk Alloc’ (rM ρ′)) ∧ (Alloc ⊆ Alloc′) ∧

(hasType Alloc′ (rret ρ
′) (class S)) ∧ ((rx ρ

′) = (rx ρ)).

We need to show that for some Alloc′′ : allocType, that (AE Alloc′′ ρ′), where
AE are the assumptions of locinv E, i.e.,

((pc ρ′) = 9) ∧ (allocOk Alloc′′) ∧ (memOk Alloc′′ (rM ρ′)) ∧

(hasType Alloc′′ (rret ρ
′) (class S))

((rx ρ
′) 6= 0) ∧ (hasType Alloc′′ (rx ρ

′) (class S))

This is satisfied with Alloc′′ taken equal to the Alloc′ from Iret. In particular,

(pc ρ′) = (ra ρ) = &Lret = 9,

where the middle equality comes from the assumptions of D; similarly using
that (rx ρ

′) = (rx ρ), the assumptions of D provide

((rx ρ
′) 6= 0) ∧ (hasType Alloc (rx ρ

′) (class S)).

Finally we need to establish that (hasType Alloc′ (rx ρ
′) (class S)), given

that it holds at the “old” allocation state Alloc. This can be establish using
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the assumption of Iret that Alloc ⊆ Alloc0, as a case of the following general
lemma:

(hasType Alloc A T ),

(Alloc ⊆ Alloc′)
(hasType Alloc′ A T )

4.2.3 Completing the Cool Extension

In order to complete the Cool extension, it is necessary to describe the handling
of the initial coverage proof, and of the run-time support functions. These
require a somewhat different approach. In the implementation of scanning
described by examples above, the proofs boil down to facts which come more
or less directly from the Cool type system. In the initial locinv and the run-time
functions, however, the Cool type system is not enforced: in the case of the
initial locinv it is not yet in place, and in the certain of the run-time functions
it is temporarily set aside. The job of the extension, then, is to show that the
framework we have set up for the Cool type system can in fact be superimposed
on the initial locinv, and will in fact be preserved by the end of each call to a
run-time function.

At time of writing, our prototype implementation has only just begun to
incorporate this work. I sketch here the anticipated approach.

4.2.3.1 The Initial Coverage

So far I have concentrated on the main iterative behavior of the Cool extension:
responding, step by step, to the proof obligations given by the decoder after
scanning other of the extension’s locinvs. It is still necessary to consider the
beginning of the process, that is, the initial locinvs created by the extension.
Recall from Section 3.4.4 that the decoder produces an initial locinv describing
in substantial detail the initial state of the program. In particular, the initial
state of the memory is given. Thus, the decoder’s initial locinv asserts that each
memory address in the stack, heap, and static data of the program satisfies the
addr predicate; and for the static data, it also specifies the contents of every
memory location.

The extension’s job is to produce its own initial locinvs, and to establish
that its locinvs cover the decoder’s. In practice we have found it convenient
to have the extension produce all of the locinvs corresponding to the start of
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each function in the program at this time. These locinvs can be referred to
again at the function call points, rather than being created then. However,
from the standpoint of producing the initial coverage proof, all that is required
is one locinv corresponding to the actual entry point. In Cool programs this is
a function provided by the run-time library trap.handler, which essentially
corresponds to the Cool code (new Main).main().

The decoder’s initial locinv contains a lot of information, but not organized
in a way which is useful to the extension. The extension’s initial locinv will
abstract away the contents of the memory M , only it will need to establish
the invariant that (memOkH Alloc M), and the other invariants. This initial
coverage proof, unlike the proofs described earlier which relied only on the
lemmas given, will depend more directly on the definitions of the predicates.

For instance, the invariants include the claims that for every address A
which can be proven to have the type (ptr T ), for some T , then (addrA) holds,
and furthermore (selM A) has the type T . The approach we will use to this is
to first prove an exhaustive categorization of the the typing relationship which
holds under the initial, explicitly given Alloc. We give, in fact, an explicit list
of all the addresses which have a ptr type; and then for each member of this
list, we check that it has the properties required of it. This work would be
tedious for a human, but it does not seem likely to be difficult to implement.

4.2.3.2 Cool’s Run-time Functions

One thing is left to complete the Cool extension. Most of a compiled Cool
program can be understood using a particular set of lemmas reflecting the
types and invariants described above. But the run-time support functions will
mostly require a more general approach. For instance, the allocation state
Alloc remains unchanged outside of calls to Object.copy. Lemmas about the
hasType predicate with respect to a single particular Alloc suffice everywhere
else; and the call sites can be handled by maintaining that Alloc0 ⊆ Alloc where
Alloc0 is the allocation state before the call, and Alloc is the allocation state
after the call. Then a general lemma can be used to tranfer the typing state
before a function call to the state after a function call. (This is used at every
function, since any function might potentially call Object.copy.)

Verifying the body of Object.copy itself is more difficult. For simplicity
I will ignore garbage collection and assume a simple Object.copy which just
finds the next block of free space of the appropriate size, and produces a byte-
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wise copy of its argument in that space. The difficulty comes from establishing
that the invariants hold with the new memory and Alloc afterwards.

The approach I propose is similar to that described above for handling the
initial coverage proof. A characterization of all the addresses with pointer types
is given, separated into all of those which have that type in the old allocation
state, and an explicit list of the “new” pointers resulting from the allocation.
Then the invariants are proven directly from the definitions with reference to
this characterization.

4.3 Stack Handling

In actual Cool programs, many of the values which I have carried in registers
in the examples of the last section would in fact be carried on the stack.

The trusted infrastructure of the Open Verifier does not have a special
notion of a stack. Reads and writes to the stack are interpreted exactly as
any other memory reads and writes. It is up to the extension to maintain
special invariants which allow it to handle stack accesses in a particular way.
This allows us to keep the trusted infrastructure as generic as possible, and in
particular to leave all handling of software conventions to the extension.

In this section I will set up a modular approach to stack handling which
could be incorporated into various extensions.

There are several features relating to the conventional use of the stack which
I intend to model:

• Most invariants, not dealing with explicitly with the stack, only depend
on the state of the memory apart from the stack. For the sake of effi-
ciency this dependence should be explicit in the logic, so that the (rather
frequent) writes to the stack do not require re-establishing that the non-
stack invariants hold.

• A function only modifies a certain area of the stack (its stack frame).
In particular, the caller function can assume that the stack above the
callee’s frame is preserved.

• Each word in a function’s stack frame should be able to be handled es-
sentially as if it were a machine register.
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• Finally, if the program is actually memory safe, it must have some pro-
vision for checking that stack overflow does not occur.

4.3.1 Memory Regions

To handle the notion that stack changes should not affect various invariants to
be maintained about the rest of the memory, I introduce the concept of memory
regions. The type region will be the type of sets of memory addresses, where
membership in a region is given by the predicate

InRegion : region → val → Prop.

In examples, and in the implemented extensions, there are two regions stack

and heap (which latter name may be slightly abusive, as it is intended to
include the program’s data segment as well as any other memory given to it by
the operating system).

A regionSet is an association list which associates regions to memories.
So for instance, for memories S and H of type mem,

[(stack, S); (heap, H)] : regionSet.

The idea is that the extension will use a regionSet in place of the actual
current memory, introducing functions

regUpd : regionSet → region → val → val → regionSet;

regSel : regionSet → region → val → val

corresponding to upd and sel for type mem. (In principle the functions need not
take the region in which the update or select occurs, instead determining which
region the given address belongs too. But practically one always can determine
which region is intended beforehand, and this approach is more efficient.)

For regUpd and regSel to be sensible, the regionSet needs to satisfy an
invariant

regions : mem → regionSet → Prop.

The predicate (regions M R) holds when

• for each (reg,Mreg) in R, M and Mreg agree on all addresses in reg;

• the regions in R are pairwise disjoint;
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• for each region reg in R, addr holds of all addresses in reg.

The first requirement is clearly what is needed to use a regionSet in place
of the memory. The other two requirements are a convenience: pairwise-
disjointness means one never needs to worry about updating more than one
region, and the requirement that all the addresses be addr means that the
InRegion predicate will suffice to establish local memory-safety conditions.

There are straightforward lemmas which allow an extension to use a
regionSet R for which (regions M R), such as selecting values in such a
way that the value selected is the same as that selected from M , and updating
the regionSet so that the predicate regions is preserved. I will not go into
detail here.

An extension using the regions framework will maintain in each local in-
variant existential variables S and H of type mem, and include an assumption

regions M [(stack, S); (heap, H)]

where M is the memory of the locinv. All the assumptions relevant to the stack
will use S instead of M ; all the assumptions relevant to the heap (such as the
Cool extension’s memOk) will use H instead of M . In particular, this shields
assumptions about the heap from any memory changes occuring only on the
stack.

It is not difficult to work with regions which change over the course of the
program, due for instance to memory allocation, but I will not discuss this
further here.

4.3.2 Stack Frames and Stack Preservation

Nothing in the memory-safety policy requires that a given function only touch
some particular part of the stack. But enforcing a notion of stack frame is
extremely helpful in ensuring general memory safety. Within any given function
it is assumed that there is a given range of accessibly memory addresses from
L to H. L and H are specified as offsets from the initial stack pointer sp0,
the stack pointer on function entry. The relationship between sp0, L, and
H is determined by the calling convention used by the function, which can
be obtained by the extension via code annotations (which can generally be
automatically generated). Usually, any arguments to the function which are
placed on the stack are at sp0, sp0 +4, . . .H; and then L is less than H by
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the size of the function’s stack frame. The stack frame size can be given by
annotations, or can be fixed at some amount like four kilobytes (in which case
L = H − 4092).

This process is implemented by including in each locinv the assumption
(StackFrame L H). This is defined so that it implies

∀A.L ≤ A =⇒ A ≤ H =⇒ (InRegion stack A).

(The full definition will include more in order to handle stack-overflow checking
mechanisms, see below.) The intention is that the extension will use only this
method to prove that addresses are on the stack (and are thus valid to read
and write).

Some additional work is needed to correctly handle function calls. The
caller needs to be able to establish that its own stack, outside of the callee’s
stack frame, has not been modified. This is entailed by the predicate
(PreservedStack S0 H S), which is defined to mean

∀A. H ≤ (A− 4) =⇒ (selS0 A) = (selS A).

That is, the stack memories S0 and S coincide at addresses strictly above H.
Each locinv within a function will carry a PreservedStack assumption with
S0 the initial stack memory at function entry, H the highest member of the
function’s stack frame, and S the current stack memory; the function return
progress continuation (see Section 4.4) will also carry such an assumption. With
this in place, the caller function will have the assumption available after the
call, and so can establish that all of its stack slots include the values they had
before the call.

4.3.3 Stack Slots and Stack Pointers

Internally, the extension maintains registers and stack slots in essentially the
same fashion; in fact, the current implementation uses a single array, in which
indices higher than the number of machine registers correspond to the stack
slots. For each register or stack slot a symbolic expression is stored which gives
its value. To present this as a locinv, the values of the registers are stored in the
regs field, whereas the values of the stack slots are stored as assumptions that
(selS (sp0 +offset)) = slotoffset, where S is the current stack memory, and
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sp0 is the initial stack pointer at function entry. (In fact, to avoid extra non-
determinism in how the Kettle theorem prover uses equality facts, a defined
predicate (FrameContents (sp0 +offset) slotoffset S) is used instead.)

Whenever a memory read or write occurs, the stack module first checks to
see whether it was on the stack. If so, it proves the local safety condition using
the StackFrame assumption; then it proceeds as if the instruction were a simple
register move, only involving a stack-slot pseudo-register. In the case of a read,
the correctness of the result is established using the relevant FrameContents

assumption; in the case of a write, a FrameContents assumption is added or
altered. At function calls the stack slots of the caller and callee have to be
related by a translation of the different offsets.

Meanwhile, the extension must keep track of which registers and stack slots
are not storing values directly, but are storing pointers to stack locations—are
stack pointers. Stack pointers are always maintained in the form sp0 +offset
where sp0 is the initial stack pointer on function entry.

4.3.4 Stack Overflow

Each locinv generated by the extension will contain a StackFrame assumption.
At function calls, the stack frame will change. For non-recursive calls, the
callee’s stack frame can be considered to be contained in the caller’s stack
frame. For recursive calls this is insufficient: the stack frame needs to grow,
and thus for memory safety, there needs to be some mechanism to check stack
overflow. At the level of the logic this is primarily reflected in the eventual
complete definition of StackFrame. Here I describe two approaches to stack
overflow.

4.3.4.1 The Stack on a 1MB Page

Under this approach, it is assumed that an entire 1MB page has been devoted
to the stack, and thus that if two addresses are on the same 1MB page, one
of which is a stack address, then both are stack addresses. A program can
guarantee that there is no stack overflow by adding run-time checks before
recursive function calls, to ensure that the low address of the callee’s frame is
in the same 1MB page as the low address of the caller’s frame. Explicitly, if
the two addresses are lold and lnew, it is checked that

srl (bxor lold lnew) 20 = 0,
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where bxor is the bitwise exclusive or, and srl is a shift-right (in this case, by
20 bits). The condition ensures that the two addresses are on the same 1MB
page by ensuring that all bits to the left of the 20th agree. If this condition
fails, the program (safely) aborts.

The logical support for this approach is the following definition of
StackFrame:

Definition 4.3.1. The predicate (StackFrame l h) holds if and only if
(InRegion stack a) holds for all a such that either:

• l ≤ a ≤ h; or

• srl (bxor x a) 20 = 0 for some x such that l ≤ x ≤ h.

That is, every address between l and h, or else on the same 1MB page as such
an address, is on the stack.

The lemma actually used to handle the frame change at stack checks and
function calls is:

Lemma 4.3.2. Let lold, hold, lnew, and hnew be addresses, where
(StackFrame lold hold). Then (StackFrame lnew hnew) if hnew ≤ hold and ei-
ther of the following two conditions hold:

• lold ≤ lnew, or

• there exists an address lcheck such that lold ≤ lcheck ≤ hold and
srl (bxor lcheck lnew) 20 = 0.

4.3.4.2 Guard Pages

A technique often used to prevent stack overflow is to ensure that at there is
a certain area of unmapped virtual memory at the bottom of the stack. Any
attempt to read or write this memory—which will tend to happen when a stack
overflow occurs—will result in a (potentially handleable) segmentation fault.
This technique is usually considered important for multithreaded applications,
but is entirely applicable to single-threaded programs which must be memory
safe.

Under this approach, checking against stack overflow is merely reading or
writing the stack, where if a stack overflow occurs, the read or write is in the
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guard page, and a segmentation fault results. To use this approach, the safety
policy must consider the addresses in the guard page to be valid addresses,
even though reading or writing there results in a segmentation fault. There is
a potentialy confusion about this approach, which might seem to enable one
to claim only vacuously that “the program is memory safe, or else a segmenta-
tion fault occurs”. In fact it is guaranteed that any segmentation fault is due
precisely to stack overflow, and that every memory access up until the segmen-
tation fault occurs is genuinely valid. In effect, the segmentation fault takes
the place of an ordinary call to safely abort in the presence of stack overflow.

In order for the guard page to guarantee that any stack overflow will cause a
segmentation fault, the program must ensure that no two stack accesses are sep-
arated by more than the size of the guard page. The gcc compiler will introduce
any extra checks needed, when it is invoked with the argument -fstack-check.
In particular gcc -fstack-check will produce a “stack probe” at the begin-
ning of every function which calls other functions. If the size of the guard
page is 4096 bytes, then the stack probe will write a zero into the address 4096
bytes below the lowest argument of the caller’s stack frame.5 Observe that the
program will only be guaranteed safe with respect to stack overflow under this
scheme, if no function has a stack frame larger than 4096 bytes.

The Open Verifier framework will support this approach to stack overflow,
but the decoder must be modified, to allow for the fact that memory reads
and writes to valid addresses may cause an abort (actually, a segmentation
fault). In effect, the semantics of memory accesses are as if they were branch
instructions. If the address is in the guard page, the program aborts (safely).
Otherwise the program continues to the next instruction.

I introduce the logical predicate NotInGuardPage : val → Prop which
holds of all addresses not in the guard page. The decoder of Figure 3.3 is then
modified as follows:

5The actual behavior of gcc -fstack-check is slightly more complicated. Firstly, it tries
to ensure that 300 bytes of stack are available for any stack overflow recovery mechanism.
This can be handled by considering each function’s stack frame to be 300 bytes larger than
the stack space which is actually used by the function. Secondly, it handles the additional
checks necessary when allocating large objects on the stack, which I do not discuss here.
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Instruction P D
read r a λρ. addr(a ρ) {C with regs = λx .ρ[pc 7→ (pc ρ+SAL 1);

r 7→
(

sel(rM ρ) (a ρ)
)

],

assume = λx . (NotInGuardPage (a ρ)) ∧

(C.assume x )}
write a e λρ. addr(a ρ) {C with regs = λx .ρ[pc 7→ (pc ρ+SAL 1);

rM 7→
(

upd(rM ρ) (a ρ) (e ρ)
)

],

assume = λx . (NotInGuardPage (a ρ)) ∧

(C.assume x )}

The decoder result could be considered as having a second continuation,
corresponding to the abort state resulting from an attempt to access the guard
page; but since this state is considered safe, we can ignore it. (Recall from
Definition 2.6.8 that safe next states do not have to be included in the decoder’s
output continuations.)

We now use the following definition for StackFrame:

Definition 4.3.3. The predicate (StackFrame l h) holds if and only if
(InRegion stack a) holds for all a such that (l − 4096) ≤ a ≤ h.

So the stack—including the guard page—is always assumed to extend a full
page below the bottom of the current function’s frame. We use the following
lemma (which is obvious given a contiguous stack with a guard page at the
borrom):

Lemma 4.3.4. Let a be an address such that (InRegion stack a) and
(NotInGuardPage a). Then for any address b such that (a− 4096) ≤ b ≤ a, we
have that (InRegion stack b).

It is now easy to establish the lemma which allows the stack frame to change
at function calls and stack checks:

Lemma 4.3.5. Let lold, hold, lnew, and hnew be addresses, where
(StackFrame lold hold). Then (StackFrame lnew hnew) if hnew ≤ hold and ei-
ther of the following two conditions hold:

• lold ≤ lnew, or
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• (NotInGuardPage lnew), and (lold − 4096) ≤ lnew ≤ hold.

When a stack probe occurs, the decoder will add the assumption that the
probed address is not in the stack guard page. (To repeat, if it had been in the
guard page, the program would have aborted safely.) The extension can then
use this lemma to extend the stack frame down to the probed address.

4.4 Function Calls

In SAL a function call is simply a direct jump. Those features which make a
jump into a function call are just conventions, typically enforced by the higher-
level programming language and compiler. These conventions typically center
around the notion of return: the function may eventually return control, via an
indirect jump, to some code specified by the initial values of the registers after
the function call. Often there is a specified return-address register which holds
the code location to jump to. The software conventions further specify what
conditions must hold on return, e.g. that the callee can assume that certain
registers were not changed during the function call.

I will now discuss methods by which an extension can describe these con-
ventions, and use them to prove the safety of a program involving functions.

4.4.1 Using Progress Continuations

Function returns are the prototypical instance of using the progress continu-
ations of locinvs. Recall that any locinv C can contain a list C.progress of
locinvs, parametrized by C.type. The meaning, as given by the satisfaction
relation, is essentially that these locinvs are assumed to be safe: should the
machine reach a state satisfying one of the progress continuations, (indefinite)
further progress is possible.

So to handle function calls, it is assumed that it is safe to return. For
simplicity assume that there is a dedicated return-address register ra. A func-
tion F which contains no potentially unsafe instructions, thereby requiring no
preconditions to be safe, and which guarantees nothing to the caller, thereby
requiring no postconditions, would be described by a locinv C where ρ |=i C if
any only if

∃x.(pc ρ) = F ∧ (ra ρ) = x ∧ ∀j ≤ i. safej(λρ
′.(pc ρ′) = x).
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Note that this locinv refers to the initial state of execution of the function. The
existential variable x is the original value of the return address register. If the
return address register changes, the extension has to keep track of this x in
some other way, for it is used in the progress continuation. So for instance if
by line n the ra has been incremented, one might have

∃x.(pc ρ) = n ∧ (ra ρ) = x+ 1 ∧ safei(λρ
′.(pc ρ′) = x).

Most commonly, of course, the value represented by x will be saved (on the
stack) whenever the ra register needs to hold another value (for another func-
tion call). Then the ra can be restored to have the value x before the return
(an indirect jump to ra).

Under this assumption that it is safe to return, the locinvs from the body
of the function can be established as safe. Within the body of the function,
the progress continuation is carried along unchanged and does not affect the
proofs. At function call sites, the continuation of the callee must be covered
by a locinv corresponding to the actual return site for that call; an example of
this is shown in Section 4.2.2.2. Finally, at the return instruction, the progress
continuation is itself used to establish coverage. Consider, for example, the
method R.next mentioned in Section 4.2.2.2. The extension establishes the
following locinv for the start of that function:

IR.next = λρ. ∃Alloc. ((pc ρ) = &R.next) ∧

(allocOk Alloc) ∧ (memOk Alloc (rM ρ)) ∧

(hasType Alloc (rarg0 ρ) (class R)) ∧ ((rarg0
ρ) 6= 0) ∧

safe
(

λρ′. ∃Alloc′. ((pc ρ′) = (ra ρ)) ∧

(allocOk Alloc′) ∧ (memOk Alloc’ (rM ρ′)) ∧ (Alloc ⊆ Alloc′) ∧

(hasType Alloc′ (rret ρ
′) (class S)) ∧ ((rx ρ

′) = (rx ρ))
)

.

Observe that the progress continuation refers to the return address register ra,
the callee-save register rx, and the allocation state Alloc of the host locinv.
During the execution of the function these values might change, but the values
relevant to the progress continuation will continue to be the values at function
state; so if any change, a new existential variable will have to be introduced to
hold the original value. We can do this pre-emptively and re-express the locinv
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as

IR.next = λρ. ∃ra0, x0,Alloc0,Alloc. ((pc ρ) = &R.next) ∧

((ra ρ) = ra0) ∧ ((rx ρ) = x0) ∧ (Alloc = Alloc0) ∧

(allocOk Alloc) ∧ (memOk Alloc (rM ρ)) ∧

(hasType Alloc (rarg0 ρ) (class R)) ∧ ((rarg0
ρ) 6= 0) ∧

safe
(

λρ′. ∃Alloc′. ((pc ρ′) = ra0) ∧

(allocOk Alloc′) ∧ (memOk Alloc’ (rM ρ′)) ∧ (Alloc0 ⊆ Alloc′) ∧

(hasType Alloc′ (rret ρ
′) (class S)) ∧ ((rx ρ

′) = x0)
)

.

Now suppose that the verification reaches a return instruction. If ra or rx
have changed during the function, they have been restored to their original
value. In the input locinv C, the progress continuation has been carried un-
changed since the start of the function. Generally C might contain many more
assumptions; here I have shown only those which are relevant to the return.

n ijump ra

C: λρ. ∃ra0, x0,Alloc0,Alloc.
((pc ρ) = n) ∧ (hasType Alloc (rret ρ) (class S)) ∧
((ra ρ) = ra0) ∧ ((rx ρ) = x0) ∧
(allocOk Alloc) ∧ (memOk Alloc (rM ρ)) ∧ (Alloc0 ⊆ Alloc) ∧
safe

(

λρ′. ∃Alloc′. ((pc ρ′) = ra0) ∧

(allocOk Alloc′) ∧ (memOk Alloc’ (rM ρ′)) ∧ (Alloc0 ⊆ Alloc′) ∧

(hasType Alloc′ (rret ρ
′) (class S)) ∧ ((rx ρ

′) = x0)
)

.

P : true

D: {D} where D = λρ. ∃ra0, x0,Alloc0,Alloc.
((pc ρ) = (ra ρ)) ∧ (hasType Alloc (rret ρ) (class S)) ∧
((ra ρ) = ra0) ∧ ((rx ρ) = x0) ∧
(allocOk Alloc) ∧ (memOk Alloc (rM ρ)) ∧ (Alloc0 ⊆ Alloc) ∧
safe

(

λρ′. ∃Alloc′. ((pc ρ′) = ra0) ∧

(allocOk Alloc′) ∧ (memOk Alloc’ (rM ρ′)) ∧ (Alloc0 ⊆ Alloc′) ∧

(hasType Alloc′ (rret ρ
′) (class S)) ∧ ((rx ρ

′) = x0)
)

.

E : { }

The extension proves that the decoder’s locinv D is covered by no locinvs;
that is, D proves its own safety, because it is covered by its own progress
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continuation. To see this, fix ρ and the existential variables x0, ra0, Alloc0, and
Alloc; and assume that the assumptions of D hold:

((pc ρ) = (ra ρ)) ∧ (hasType Alloc (rret ρ) (class S)) ∧

((ra ρ) = ra0) ∧ ((rx ρ) = x0) ∧

(allocOk Alloc) ∧ (memOk Alloc (rM ρ)) ∧ (Alloc0 ⊆ Alloc)

We just need to establish that for some value of the existential variable Alloc′,
the assumptions of the progress continuation hold at the same state ρ:

((pc ρ) = ra0) ∧

(allocOk Alloc′) ∧ (memOk Alloc’ (rM ρ′)) ∧ (Alloc0 ⊆ Alloc′) ∧

(hasType Alloc′ (rret ρ) (class S)) ∧ ((rx ρ) = x0)

But this is clearly the case just taking Alloc′ = Alloc.

4.4.2 Another Approach to Returns

Above I have advocated handling function returns by setting up a progress
continuation which refers to some content of the host locinv:

∃x.(pc ρ) = F ∧ (ra ρ) = x ∧ ∀j ≤ i. safe(λρ′.(pc ρ′) = x).

Here, the progress continuation references the variable x set up by the sur-
rounding context of the host locinv.

Another approach is to statically enumerate all possible return points of
function F . For instance, suppose that F is called three times, with the return
points being lines 17, 191, and 321. Then the following locinv could be used
for F :

∃x.(pc ρ) = F ∧ (ra ρ) = x ∧ (x = 17 ∨ x = 191 ∨ x = 321).

There is no need for any progress continuation in this locinv. Instead, at the re-
turn instruction, a case analysis is performed. The three locinvs corresponding
to lines 17, 191, and 321 will cover the decoder’s locinv.

This could be lemmatized, by covering once and for all the single locinv

(pc ρ) = 17 ∨ (pc ρ) = 191 ∨ (pc ρ) = 321.
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Then this “global progress continuation” can be used at each return instruction.
Such lemmatization improves efficiency if there are many return instructions,
and many possible return points.

This approach is simpler in terms of the complexity needed from the frame-
work: no progress continuations are involved. However it suffers from potential
drawbacks in extensibility. Using progress continuations, we could potentially
prove the safety of library code: the locinv for F corresponds to all function
calls to F , even those not part of the library code and thus not available when
safety is being established.

It is not as obvious how to do this using the disjunction approach. It could
be possible to extend the disjunction with some kind of parameter:

x = 17 ∨ x = 191 ∨ x = 321 ∨ x ∈ R,

where R is intended to be the list of return points in linked code. The library
code could then be proven safe for all possible values ofR, under the assumption
that various locinvs from the linked code are safe. I have not worked out exactly
how this could be accomplished, and in any case it seems more complicated
overall than the version using progress continuations.

In the case of a having the completely linked code available for static analy-
sis, the approach using disjunctions can be easier. I would advocate its use for
certain kinds of indirect jumps where extensibility is probably not an issue, for
instance the indirect jumps used to implement switch statements, where the
various cases are all locally available. The current implementation uses dis-
junctions to implement method dispatch for the object-oriented language Cool
(Section 4.2.2.2); further work would be needed if it were to apply extensibly
to the safety of Cool libraries.
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Chapter 5

Conclusions

In the preceding chapters I have described the Open Verifier system for en-
forcing safety properties, such as memory safety, of untrusted code. The system
allows the code producer to provide an untrusted verifier, called the extension,
as executable code; the trusted components of the Open Verifier then work
together with the untrusted extension to produce a trustworthy verification.
I have described the logic and architecture of the interaction between trusted
and untrusted components which makes this possible. I have also described an
approach to developing extensions, in particular a proof development approach,
which we have used successfully to verify the memory safety of compiled code
from the Java-like Cool language.

In this final chapter I conclude by giving a preliminary evaluation of the
Open Verifier as a security enforcement mechanism; a comparison with related
work; and directions for future research.

5.1 Evaluating the Open Verifier

At this point it is appropriate to return to the metrics of trustworthiness, flex-
ibility, and scalability which I put forward in the Introduction. To get useful
measurements it is necessary to refer to a real implementation; our implemen-
tation is still in a preliminary stage, so some of what I discuss here is also
preliminary. Nonetheless the project is now advanced enough for a somewhat
accurate appraisal.
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Untrusted Trusted
module # lines module # lines

OCaml Convcool 3,400 Openver 1,500
Convstack,Convfunc 500 Proof 700
Coolext 1,500 SAL 900
Stackext,Funcext 1,400 MIPSparse 1,000
Kettle (approx.) 3,000

Total 9,800 Total 4,100
Kettle cool.rules 1,000

stack.rules 350
Coq cool.v (est.) 2,500 Soundness theorem 150

stack.v 400

Figure 5.1: Number of lines of code in the Open Verifier.

5.1.1 Trustworthiness

Trustworthiness can be roughly measured by the amount of code in the trusted
code base of the Open Verifier. Figure 5.1 shows the lines of code in both
the trusted and untrusted modules (written in OCaml) used to verify Cool, as
well as the lines of lemma statements (written as Prolog proof rules for the
automatic theorem prover) and proofs of the lemmas (written in Coq). I will
refer to this figure again as an estimate of the work required to build from a
conventional verifier to an extension for the Open Verifier.

Convcool is the conventional verifier for Cool, which works similarly to a
bytecode verifier but directly on MIPS code rather than specialized bytecodes.
Convstack and Convfunc are also used in the conventional verifier, but are
generic modules for handling the run-time stack and function calls, which can
also be used by other conventional verifiers. Coolext is the code for the Cool
extension. One of its main jobs is to take the abstract states given by Convcool

and wrap them into locinvs. Stackext and Funcext are generic modules to be
used by extensions to work with Convstack and Convfunc.

Kettle is a proof-generating Prolog interpreter used by the extension to
automatically establish proof obligations. Using Kettle requires providing
lemmas given as Prolog proof rules. These are cool.rules and the generic
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stack.rules (no special predicates or lemmas are needed to handle functions,
only a particular way to organize the locinvs and coverage proofs). Finally
these rules/lemmas need to be proven, for which we use the Coq interactive
proof development system. These are cool.v and stack.v.

The Cool extension (and its Coq script) will need to be extended in order
to handle the run-time system.

On the trusted side, the main module is Openver which encodes the notion
of locinv and the algorithms for the director, the decoder, and the checking of
coverage proofs. Proof is the proof checker for the first-order proofs, produced
either by hand or by Kettle. SAL encodes the simple assembly language which
is verified, while MIPSparse is a translator from MIPS into SAL. Note that
the table does not show the code used to check the Coq proofs. We would
like to be able to expand the simple Proof proof checker to handle them,
but currently we are using Coq to check them. The type-checking Coq kernel
contains approximately 8000 lines of OCaml code, but even the kernel of Coq
handles much more than we need. For comparison I include the size of the
Coq script for the soundness of the Open Verifier algorithm (Section 2.6); this
includes the general notions of locinv, decoder, and coverage, but not their
particular implementations.

The size of the Open Verifier’s trusted code base (TCB) compares favorably
to an estimated 15,000 to 25,000 lines of code in the TCB of Touchstone.
Although Touchstone works with a Java compiler, which is more complex than
our Cool compilers, no more trusted code would be required for the Open
Verifier to handle Java (and in fact even the amount of extra untrusted code
needed should not be excessive). The TCB of an FPCC system is estimated
in [4] to require between 500 and 1000 lines of logic about the encoding of
instructions as machine integers, plus about 600 lines of logic encoding the
semantics of the instructions and the safety policy, and finally the executable
code of a proof checker for higher-order logic. We believe that the trusted code
base of the Open Verifier is small enough that it can be understood and checked
by hand in a convincing way, and that we have used more trusted code in the
right way, not to sweep difficult proofs under the rug, but rather to permit
developers of certifying compilers/verifiers to concentrate less on the tedious
and more on the challenging and interesting aspects, and overall to make their
job more feasible.
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5.1.2 Flexibility

The Open Verifier has obvious advantages in flexibility compared with stan-
dard virtual machines, or even with Touchstone. Whereas programs written
for, say, the Java virtual machine have to be constrained according to allow-
able bytecodes, an Open Verifier client can use any compilation strategies or
optimizations whatsoever, as long as they can in each instance be proven safe.
This also saves the cost of interpretation or even just-in-time compilation.

In principle, the Open Verifier should be substantially flexible with respect
to the source language being verified. It is a matter for future experiment,
however, to tell in practice whether more complicated languages (such as func-
tional languages like ML) can be feasible handled. Preliminary results with
verifying TAL indicate that more powerful type systems can be handled just
as well as Cool’s Java-like type system.

It is worth noting in this respect that we advocate a particular restricted
use of logic in the Open Verifier, such that the assumptions of local invariants
are first-order, and any higher-order reasoning is restricted to the particular
forms of progress continuations and coverage proofs. This restricts the kinds
of proof techniques which work with the Open Verifier; for example the han-
dling of recursive types in semantic FPCC as in [6] cannot be used. However
(considering our work with Cool and our preliminary success with TAL) this
doesn’t seem to restrict the kinds of programs which can be handled, and the
kinds of proof techniques we advocate seem considerably simpler.

5.1.3 Scalability and Usability

With the Open Verifier the main efficiency concern is efficiency of verification.
Similar to PCC, efficiency of execution is unimportant because executable code
is used directly. The architecture of the Open Verifiers offers an advantage over
PCC, in that transmission is also not much of an issue, because an executable
verifier is transmitted so that proof creation occurs on-site; this means in par-
ticular that we don’t need to worry so much about how most efficiently to
structure and transmit the proofs.

To measure the efficiency of verification we have used the conventional veri-
fier as a baseline. Again, the conventional verifier is structured similar to most
bytecode verifiers; so this is analogous to measuring the cost of going from
an ordinary Java bytecode verifier to a proof-generating, certifying bytecode
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verifier. At the time of writing the Cool extension runs 20 times slower than
the Cool conventional verifier. We hope to do much better, and in fact have
only just begun to work on improving performance; for instance, a single small
change in performing substitutions yielded a factor of 2 improvement. Many
other such improvements may be possible.

A more important measure is the ease of developing extensions. Again, the
appropriate baseline is a conventional verifier; if someone can write a straight-
forward conventional verifier, how much more work is required to wrap it into
an Open Verifier extension? Figure 5.1 gives a rough idea of the number of lines
of code and proof required. There is a fair amount of effort, but we believe it to
be manageable. Also, much of the implementation effort is common to different
extensions; we have already succeeded in separating out certain elements into
fully reusable modules (such as the handling of stacks and function calls). In
the process of working on various extensions, we have developed some software
engineering techniques which have proved very helpful. In particular we have
a graphical user interface which works like an integrated debugger, only via
verification steps rather than execution steps. It would be difficult for me to
overstate the usefulness of such a tool in developing extensions.

5.2 Related Work

5.2.1 Virtual Machines

I have already discussed relationships with work on virtual machines in the
Introduction. Here I just want to mention another line of research on making
a more trustworthy virtual machine, which is to actually verify the bytecode
verifier (a survey of such work is in [23]). It is substantially easier to certify
each individual verification, as is done by the Open Verifier. Moreover, verified
bytecode verifiers are really formally verified algorithms for bytecode verifica-
tion; it is another step to to ensure that the implementation is correct with
respect to the algorithm. One approach to this step is to automatically extract
the bytecode verifier from the proof that its algorithm is correct [8]. Proof
extraction technology is still relatively primitive; also, if one certifies individ-
ual verifications instead, one is more free to introduce optimizations into the
verifier code.
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5.2.2 Typed Assembly Language (TAL)

Typed assembly language (TAL, [28, 27, 26, 15]) is a another approach to
certified code. Instead of using an intermediate language of bytecodes, TAL
provides a way to use the target machine language with a powerful type system.
In this sense it can be considered an approach to a generic virtual machine,
where the “intermediate” language is in fact the target language.

Compilers could be built from many source languages to TAL, but as with
other approaches to generic virtual machines, this requires that the type sys-
tem of the source language and compilation strategy be coerced into TAL’s
type system. The Open Verifier framework allows particular extensions to be
tailored to particular requirements. (The work of [15] proposes a model for a
client-specifiable type system for TAL, using a framework similar to that of
syntactic FPCC, described below.) Also, TAL is restricted to the notion of
typing, whereas Open Verifier extensions can work with more general logical
assertions including typing. In some cases this may be only a superficial differ-
ence (such as our preference for an equality predicate over singleton types), but
we think that not being limited to types may allow new and easier solutions to
certain verification problems.

5.2.3 Foundational Proof-Carrying Code (FPCC)

Superficially, the Open Verifier is very different from work on foundational
proof-carrying code (FPCC, see [5, 25, 6, 4, 1] and [19, 39, 43]). First, with
the Open Verifier code need not carry a proof at all but rather an executable
verifier. I have already discussed the advantages of this approach. Second,
the Open Verifier is not emphatically foundational. We are willing to include
into the trusted code base (TCB) certain components, such as the director and
decoder, which are common to the kinds of verifiers we hope to handle.

Nonetheless, there are important commonalities with FPCC. Even though
a verifier is sent rather than an explicit proof, the verifier has to provide many
parts of the proof in order for its results to be trusted. Also, those parts of
the foundational proof, which in the Open Verifier are part of the TCB, are
in fact the least difficult-to-trust parts—I might say the least interesting. For
instance, the Open Verifier works on assembly code and uses the decoder mod-
ule to determine, via a simple strongest-postcondition calculation, the result
of executing each instruction. In a strict FPCC system, the TCB would in-
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stead include a complete description in logic of which machine integers specify
which instructions, and what state transitions are affected by the instructions;
then the foundational proof much refer to these axioms at each step in order
to show that a particular state transition is taking place. There are indeed
interesting questions about how best to do this in FPCC (see [25]), nonetheless
the Open Verifier code does not seem vastly more difficult to trust than this.
Similarly, the director module of the Open Verifier encodes the main induction
common to all foundational proofs. The difficult-to-trust parts of the proof are
program-specific or type-system-specific, and these have to be given explicitly
also using the Open Verifier.

In principle, an Open Verifier verification could be built up into an FPCC
proof, using some formalization of the decoder and director (such as the Coq
formalization of Section 2.6 which is already available). We do not propose to
do this, however; we feel that such concerns as ease of extension development
are more important for future research.

If we do consider the Open Verifier alongside FPCC efforts, there are in-
teresting points to be made about the proof development approaches, what
might be called “proof engineering”. Further research is required to work out
precisely similarities and differences; here I just want to give some highlights.

All FPCC efforts share with the Open Verifier the large structure of a
co-induction, where some invariant (in the Open Verifier, this would be the
disjunction of all the local invariants) implies that safe progress is possible to
a state which still satisfies the invariant. The main difference between the
two main FPCC schools has been considered the “semantic” and “syntactic”
style. I propose that a better way of looking at the difference is “local” and
“global”, as follows. The original “semantic” FPCC uses invariants which are
local assertions about individual points in the execution; there is a specified
meaning given to “in machine state s, value v has type t”. Syntactic FPCC
uses a global notion of well-typedness; there is not particular local meaning to
some value having a type, only what can be derived from the (syntactic) proof
that the entire machine state is well-typed.

Our extensions for the Open Verifier, such as the Cool extension, also use the
“local” approach. We define a particular meaning for the typing predicate local
to a particular state. However, unlike original semantic FPCC, we have used
always a particular extension-specific syntactic family of types and intensional
typing of recursive types (Section 4.2.1.1). The original semantic FPCC has
tried to remain close to the spirit of denotational semantics, but has had to
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introduce various syntactic, intensional, and operational elements in order to
make progress. We believe that by embracing such elements, we have had an
easier time constructing our proofs.

It is more difficult to compare with syntactic FPCC, which seems to use
a fundamentally different “global” technique. However I note that this group
proposes to use the local approach to handle run-time library functions [43].
There may be benefits to using the same framework for both the run-time and
for those parts of the program which obey the type system, as we do with the
Open Verifier.

Part of the reason, that our proof construction has required less effort, may
be that we have been concentrating on building extensions specific to a sin-
gle source language and compilation strategy, whereas the FPCC groups have
concentrated more on a general approach; for instance, the semantic FPCC
method doesn’t ever restrict to a single specific type system, instead using an
entirely general notion of type which, once the necessary proofs are complete,
could in principle be used to handle a very broad class of compilers. I note that
the final step, of fully expressing a given language and compilation strategy in
terms of the general notion of types, may not be trivial; there is not yet any
published work on this aspect of “productionizing” FPCC. For the Open Veri-
fier, improving proof re-use is important for future research; at the same time,
the ability to tailor specific extensions to specific compilers (or even specific
programs) can be a very important advantage over efforts which concentrate
on a single general system.

It is also worth noting that we expect to be able to verify the output of
existing compilers, rather than having to write a new certifying compiler from
scratch.

Finally, I wish to note that we have developed some very useful software
engineering techniques for extension development. Our approach allows us to
“play” with the structure of the proof very easily. We can introduce lemmas
and see very quickly what they fix (or break) in the verification of test cases; if
at a later stage the lemma seems difficult to prove, we can tweak its statement
and check the repercussions very easily. This has contributed greatly to the
ease of extension development.
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5.3 Future Research

I close this dissertation with a list of some avenues for continuing research on
the Open Verifier.

A complete Cool verifier. I think that the first order of business should
be to complete the Cool extension, so that there are no unanswered questions
about potential difficulties with verifying the initial state and the run-time
system. It seems likely that tedium rather than difficulty is the main obstacle,
but it is important to be sure. Although we have been working with a version
of Cool without garbage collection, verifying the garbage collector would be a
great advance.

There are also performance issues to be addressed in order to obtain a
production-quality verifier.

Capacity for re-use among extensions. It is clear that there are many
commonalities among extension, both in code and in proof. Currently though
we often can only re-use heuristics, or at best re-use pieces by a cut-and-paste
process. There could be substantial work done to modularize the process, in
particularly at the level of the interactive proofs, which are probably the most
labor-intensive part of the whole effort. For instance, it would be valuable if we
could make our proof strategy explicit enough to modularize the type system,
so that any type system for which the appropriate lemmas could be proved can
be easily used with our invariants.

There is a tension here between the desire for re-use, and the fact that one
of the main benefits of the Open Verifier approach is that the extension can
be tailored specifically to the given program (or more generally, compilation
strategy).

With re-use in mind, it would be good to have experimental validation of the
ease of writing extensions. For instance, now that our techniques are relatively
mature and we have a working Cool extension, how much more difficult is it
to build an extension for the very similar Java language, perhaps using the
Touchstone compiler?

Other extensions. Since the Java-like Cool type system is relatively weak,
it is useful to have experiments showing that the Open Verifier can handle much
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stronger type systems. An extension to handle programs compiled to TAL is
also close to completion.

Logical questions. There are some interesting purely logical questions raised
by the Open Verifier. For instance, we have managed to layer the proof-
generation effort so that per-program proofs are (mostly) in Horn logic, per-
compiler proofs in first-order logic, and higher-order features are mostly re-
stricted to once-only proofs. Can this be made explicit, to some claim about
the logical strength required to establish memory safety for certain classes of
programs?

Similarly it would be worthwhile to see if the proof strategy we have used
with extensions can be applied more generally in other areas of program anal-
ysis.

Stronger safety policies. Although the Open Verifier framework can in
principal be used with a broad class of safety policies, in practice our examples
have all been about memory safety. To what extent can the same techniques
be adapted to establish stronger properties?
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